Skip to main content

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Half a century ago, at the dawn of molecular biology, few investigators realized the potential of RNA in cellular regulation and function. After a very long lag phase, the quantitative and qualitative evidence for the significance of non-protein-coding RNA (npcRNA) is now overwhelming. In the search for disease-causing gene alterations, RNA genes must be considered equally with protein-coding genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The size cutoff for small RNAs used to be about 500 nt to include SRP RNA (300 nt), 7SK RNA (332 nt), MRP RNA (287 nt), and small nuclear RNAs (depending on species), etc. Large or long RNAs were defined as being in the size range of mRNAs, sometimes even displaying mRNA-like attributes (e.g., processing, polyadenylation) but devoid of a functional open reading frame (Brosius and Tiedge 2004). The first publications on microRNAs (miRNAs) correctly designated them as tiny RNAs to discriminate them from the larger small RNAs (Ambros 2001; Lau et al. 2001; Ruvkun 2001) With time, they were more laxly addressed as small RNAs, and hence, the “new” small RNAs had to be distinguished from the “old” small RNAs, simply by stretching the latter and moving the cutoff to about 200 nt. The fact that numerous small RNAs designated as such in dozens to hundreds of previous publications are now supposed to be found under long RNAs is unfortunate.

References

  • Aguilo F, Zhou MM, Walsh MJ (2011) Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res 71:5365–5369

    Article  CAS  PubMed  Google Scholar 

  • Amaral PP, Dinger ME, Mercer TR et al (2008) The eukaryotic genome as an RNA machine. Science 319:1787–1789

    Article  CAS  PubMed  Google Scholar 

  • Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826

    Article  CAS  PubMed  Google Scholar 

  • Ariel I, Ayesh S, Perlman EJ et al (1997) The product of the imprinted H19 gene is an oncofetal RNA. Mol Pathol 50:34–44

    Article  CAS  PubMed  Google Scholar 

  • Badis G, Fromont-Racine M, Jacquier A (2003) A snoRNA that guides the two most conserved pseudouridine modifications within rRNA confers a growth advantage in yeast. RNA 9:771–779

    Article  CAS  PubMed  Google Scholar 

  • Baertsch R, Diekhans M, Kent WJ et al (2008) Retrocopy contributions to the evolution of the human genome. BMC Genomics 9:466

    Article  PubMed  CAS  Google Scholar 

  • Barta A, Steiner G, Brosius J et al (1984) Identification of a site on 23S ribosomal RNA located at the peptidyl transferase center. Proc Natl Acad Sci USA 81:3607–3611

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe DC (2007) Molecular biology. Amplified silencing. Science 315:199–200

    Article  CAS  PubMed  Google Scholar 

  • Berezikov E, Thuemmler F, van Laake LW et al (2006) Diversity of microRNAs in human and chimpanzee brain. Nat Genet 38:1375–1377

    Article  CAS  PubMed  Google Scholar 

  • Bertone P, Stolc V, Royce TE et al (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306:2242–2246

    Article  CAS  PubMed  Google Scholar 

  • Birney E, Stamatoyannopoulos JA, Dutta A et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816

    Article  CAS  PubMed  Google Scholar 

  • Blasco MA, Lee HW, Hande MP et al (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34

    Article  CAS  PubMed  Google Scholar 

  • Boudreau RL, Rodriguez-Lebron E, Davidson BL (2011a) RNAi medicine for the brain: progresses and challenges. Hum Mol Genet 20:R21–R27

    Article  CAS  PubMed  Google Scholar 

  • Boudreau RL, Spengler RM, Davidson BL (2011b) Rational design of therapeutic siRNAs: minimizing off-targeting potential to improve the safety of RNAi therapy for Huntington’s disease. Mol Ther 19:2169–2177

    Article  CAS  PubMed  Google Scholar 

  • Bowers WJ, Breakefield XO, Sena-Esteves M (2011) Genetic therapy for the nervous system. Hum Mol Genet 20:R28–R41

    Article  CAS  PubMed  Google Scholar 

  • Brosius J (1996) More haemophilus and mycoplasma genes. Science 271:1302a

    Article  CAS  PubMed  Google Scholar 

  • Brosius J (1999a) Transmutation of tRNA over time. Nat Genet 22:8–9

    Article  CAS  PubMed  Google Scholar 

  • Brosius J (1999b) Genomes were forged by massive bombardments with retroelements and retrosequences. Genetica 107:209–238

    Article  CAS  PubMed  Google Scholar 

  • Brosius J (2001) tRNAs in the spotlight during protein biosynthesis. Trends Biochem Sci 26:653–656

    Article  CAS  PubMed  Google Scholar 

  • Brosius J (2003) Gene duplication and other evolutionary strategies: from the RNA world to the future. J Struct Funct Genomics 3:1–17

    Article  CAS  PubMed  Google Scholar 

  • Brosius J (2005a) Echoes from the past—are we still in an RNP world? Cytogenet Genome Res 110:8–24

    Article  CAS  PubMed  Google Scholar 

  • Brosius J (2005b) Disparity, adaptation, exaptation, bookkeeping, and contingency at the genome level. Paleobiology, 31 (Supplement):1–16

    Google Scholar 

  • Brosius J (2005c) Waste not, want not – transcript excess in multicellular eukaryotes. Trends Genet 21:287–288

    Google Scholar 

  • Brosius J (2009) The fragmented gene. Ann N Y Acad Sci 1178:186–193

    Google Scholar 

  • Brosius J, Tiedge H (1995) Reverse transcriptase: mediator of genomic plasticity. Virus Genes 11:163–179

    Article  CAS  PubMed  Google Scholar 

  • Brosius J, Tiedge H (2004) RNomenclature. RNA Biol 1:81–83

    Article  CAS  PubMed  Google Scholar 

  • Brunkow ME, Tilghman SM (1991) Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev 5:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Cabili MN, Trapnell C, Goff L et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Cullen BR (2007) The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13:313–316

    Article  CAS  PubMed  Google Scholar 

  • Cairns-Smith AG (1982) Genetic takeover and the mineral origins of life. Cambridge University Press, Cambridge

    Google Scholar 

  • Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  CAS  PubMed  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Bocker W, Brosius J et al (1997) Expression of neural BC200 RNA in human tumours. J Pathol 183:345–351

    Article  CAS  PubMed  Google Scholar 

  • Clark MB, Amaral PP, Schlesinger FJ et al (2011) The reality of pervasive transcription. PLoS Biol 9:e1000625, discussion e1001102

    Article  CAS  PubMed  Google Scholar 

  • Couzin J (2002) Breakthrough of the year. Small RNAs make big splash. Science 298:2296–2297

    Article  CAS  PubMed  Google Scholar 

  • Crick FH (1968) The origin of the genetic code. J Mol Biol 38:367–379

    Article  CAS  PubMed  Google Scholar 

  • Cullen BR (2004) Transcription and processing of human microRNA precursors. Mol Cell 16:861–865

    Article  CAS  PubMed  Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • DeChiara TM, Brosius J (1987) Neural BC1 RNA: cDNA clones reveal nonrepetitive sequence content. Proc Natl Acad Sci USA 84:2624–2628

    Article  CAS  PubMed  Google Scholar 

  • Ding F, Li HH, Zhang S et al (2008) SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice. PLoS One 3:e1709

    Article  PubMed  CAS  Google Scholar 

  • Dinger ME, Amaral PP, Mercer TR et al (2008a) Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 18:1433–1445

    Article  CAS  PubMed  Google Scholar 

  • Dinger ME, Pang KC, Mercer TR et al (2008b) Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLoS Comput Biol 4:e1000176

    Article  PubMed  CAS  Google Scholar 

  • Duker AL, Ballif BC, Bawle EV et al (2010) Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader–Willi syndrome. Eur J Hum Genet 18:1196–1201

    Article  CAS  PubMed  Google Scholar 

  • Elton TS, Khan M, Terentyev D (2011) MicroRNAs in cardiovascular disease. F1000 Med Rep 3:10

    Article  PubMed  Google Scholar 

  • Endo T, Maekawa F, Voikar V et al (2011) Automated test of behavioral flexibility in mice using a behavioral sequencing task in IntelliCage. Behav Brain Res 221:172–181

    Article  PubMed  Google Scholar 

  • Erdmann VA, Wolters J (1987) The Berlin RNA databank. Protein Seq Data Anal 1:127

    CAS  PubMed  Google Scholar 

  • Esguerra J, Warringer J, Blomberg A (2008) Functional importance of individual rRNA 2′-O-ribose methylations revealed by high-resolution phenotyping. RNA 14:649–656

    Article  CAS  PubMed  Google Scholar 

  • Faghihi MA, Wahlestedt C (2009) Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 10:637–643

    Article  CAS  PubMed  Google Scholar 

  • Farazi TA, Spitzer JI, Morozov P et al (2011) miRNAs in human cancer. J Pathol 223:102–115

    Article  CAS  PubMed  Google Scholar 

  • Filipowicz W (2000) Imprinted expression of small nucleolar RNAs in brain: time for RNomics. Proc Natl Acad Sci USA 97:14035–14037

    Article  CAS  PubMed  Google Scholar 

  • Galli G, Hofstetter H, Stunnenberg HG et al (1983) Biochemical complementation with RNA in the Xenopus oocyte: a small RNA is required for the generation of 3′ histone mRNA termini. Cell 34:823–828

    Article  CAS  PubMed  Google Scholar 

  • Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9:775–789

    Article  CAS  PubMed  Google Scholar 

  • Gilbert W (1986) Origin of life—the RNA world. Nature 319:618

    Article  Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Belknap, Harvard University Press, Cambridge, MA

    Google Scholar 

  • Greider CW, Blackburn EH (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337:331–337

    Article  CAS  PubMed  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T et al (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  CAS  PubMed  Google Scholar 

  • Guerzoni D, McLysaght A (2011) De novo origins of human genes. PLoS Genet 7:e1002381

    Article  CAS  PubMed  Google Scholar 

  • Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    Article  CAS  PubMed  Google Scholar 

  • Hartman H (1975) Speculations on the evolution of the genetic code. Orig Life 6:423–427

    Article  CAS  PubMed  Google Scholar 

  • Herbert A (2004) The four Rs of RNA-directed evolution. Nat Genet 36:19–25

    Article  CAS  PubMed  Google Scholar 

  • Hüttenhofer A, Schattner P, Polacek N (2005) Non-coding RNAs: hope or hype? Trends Genet 21(5):287–288

    Article  CAS  Google Scholar 

  • Huttenhofer A (2006) RNomics: identification and function of small non-protein-coding RNAs in model organisms. Cold Spring Harb Symp Quant Biol 71:135–140

    Article  CAS  PubMed  Google Scholar 

  • Huttenhofer A, Kiefmann M, Meier-Ewert S et al (2001) RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBO J 20:2943–2953

    Article  CAS  PubMed  Google Scholar 

  • Huttenhofer A, Brosius J, Bachellerie JP (2002) RNomics: identification and function of small, non-messenger RNAs. Curr Opin Chem Biol 6:835–843

    Article  CAS  PubMed  Google Scholar 

  • Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802

    Article  CAS  PubMed  Google Scholar 

  • Kampa D, Cheng J, Kapranov P et al (2004) Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res 14:331–342

    Article  CAS  PubMed  Google Scholar 

  • Kapranov P, Cawley SE, Drenkow J et al (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296:916–919

    Article  CAS  PubMed  Google Scholar 

  • Kapranov P, Cheng J, Dike S et al (2007a) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–1488

    Article  CAS  PubMed  Google Scholar 

  • Kapranov P, Willingham AT, Gingeras TR (2007b) Genome-wide transcription and the implications for genomic organization. Nat Rev Genet 8:413–423

    Article  CAS  PubMed  Google Scholar 

  • Kapranov P, Ozsolak F, Kim SW et al (2010a) New class of gene-termini-associated human RNAs suggests a novel RNA copying mechanism. Nature 466:642–646

    Article  CAS  PubMed  Google Scholar 

  • Kapranov P, St Laurent G, Raz T et al (2010b) The majority of total nuclear-encoded non-ribosomal RNA in a human cell is 'dark matter' un-annotated RNA. BMC Biol 8:149

    Article  CAS  PubMed  Google Scholar 

  • Kasinski AL, Slack FJ (2011) MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 11:849–864

    Article  CAS  PubMed  Google Scholar 

  • Khalil AM, Guttman M, Huarte M et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106:11667–11672

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Krichevsky A, Grad Y et al (2004) Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc Natl Acad Sci USA 101:360–365

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Kasinski AL, Slack FJ (2011) MicroRNA therapeutics in preclinical cancer models. Lancet Oncol 12:319–321

    Article  CAS  PubMed  Google Scholar 

  • Kindler S, Wang H, Richter D et al (2005) RNA transport and local control of translation. Annu Rev Cell Dev Biol 21:223–245

    Article  CAS  PubMed  Google Scholar 

  • King TH, Liu B, McCully RR et al (2003) Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol Cell 11:425–435

    Article  CAS  PubMed  Google Scholar 

  • Kiyosawa H, Yamanaka I, Osato N et al (2003) Antisense transcripts with FANTOM2 clone set and their implications for gene regulation. Genome Res 13:1324–1334

    Article  CAS  PubMed  Google Scholar 

  • Kondrashov AV, Kiefmann M, Ebnet K et al (2005) Inhibitory effect of naked neural BC1 RNA or BC200 RNA on eukaryotic in vitro translation systems is reversed by poly(A)-binding protein (PABP). J Mol Biol 353:88–103

    Article  CAS  PubMed  Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ et al (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Yalcin A et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    Article  CAS  PubMed  Google Scholar 

  • Lapidot M, Pilpel Y (2006) Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep 7:1216–1222

    Article  CAS  PubMed  Google Scholar 

  • Lares MR, Rossi JJ, Ouellet DL (2010) RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol 28:570–579

    Article  CAS  PubMed  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG et al (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  CAS  PubMed  Google Scholar 

  • Lau NC, Seto AG, Kim J et al (2006) Characterization of the piRNA complex from rat testes. Science 313:363–367

    Article  CAS  PubMed  Google Scholar 

  • Le Quesne J, Caldas C (2010) Micro-RNAs and breast cancer. Mol Oncol 4:230–241

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    Article  CAS  PubMed  Google Scholar 

  • Lee HW, Blasco MA, Gottlieb GJ et al (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392:569–574

    Article  CAS  PubMed  Google Scholar 

  • Leighton PA, Ingram RS, Eggenschwiler J et al (1995a) Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375:34–39

    Article  CAS  PubMed  Google Scholar 

  • Leighton PA, Saam JR, Ingram RS et al (1995b) An enhancer deletion affects both H19 and Igf2 expression. Genes Dev 9:2079–2089

    Article  CAS  PubMed  Google Scholar 

  • Lerner MR, Boyle JA, Mount SM et al (1980) Are snRNPs involved in splicing? Nature 283:220–224

    Article  CAS  PubMed  Google Scholar 

  • Lewejohann L, Skryabin BV, Sachser N et al (2004) Role of a neuronal small non-messenger RNA: behavioural alterations in BC1 RNA-deleted mice. Behav Brain Res 154:273–289

    Article  CAS  PubMed  Google Scholar 

  • Lewis MA, Quint E, Glazier AM et al (2009) An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nat Genet 41:614–618

    Article  CAS  PubMed  Google Scholar 

  • Lichter P (2010) All you need is a Mir-acle: the role of nontranslated RNAs in the suppression of B cell chronic lymphocytic leukemia. Cancer Cell 17:3–4

    Article  CAS  PubMed  Google Scholar 

  • Lipovich L, Johnson R, Lin CY (2010) MacroRNA underdogs in a microRNA world: evolutionary, regulatory, and biomedical significance of mammalian long non-protein-coding RNA. Biochim Biophys Acta 1799:597–615

    Article  CAS  PubMed  Google Scholar 

  • Loewer S, Cabili MN, Guttman M et al (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42:1113–1117

    Article  CAS  PubMed  Google Scholar 

  • Lorberboum H, Digweed M, Erdmann VA et al (1986) Small cytoplasmic RNAs from human placental free mRNPs. Structure and their effect on in vitro protein synthesis. Eur J Biochem 155:279–287

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Zhang Q, Deng M et al (2008) An analysis of human microRNA and disease associations. PLoS One 3:e3420

    Article  PubMed  CAS  Google Scholar 

  • Ma W (2010) The scenario on the origin of translation in the RNA world: in principle of replication parsimony. Biol Direct 5:65

    Article  CAS  PubMed  Google Scholar 

  • Marahrens Y, Panning B, Dausman J et al (1997) Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11:156–166

    Article  CAS  PubMed  Google Scholar 

  • Marques AC, Ponting CP (2009) Catalogues of mammalian long noncoding RNAs: modest conservation and incompleteness. Genome Biol 10:R124

    Article  PubMed  CAS  Google Scholar 

  • Martignetti JA, Brosius J (1993a) BC200 RNA: a neural RNA polymerase III product encoded by a monomeric Alu element. Proc Natl Acad Sci USA 90:11563–11567

    Article  CAS  PubMed  Google Scholar 

  • Martignetti JA, Brosius J (1993b) Neural BC1 RNA as an evolutionary marker: guinea pig remains a rodent. Proc Natl Acad Sci USA 90:9698–9702

    Article  CAS  PubMed  Google Scholar 

  • Martin AN, Li Y (2007) RNase MRP RNA and human genetic diseases. Cell Res 17:219–226

    CAS  PubMed  Google Scholar 

  • Mattick JS (1994) Introns: evolution and function. Curr Opin Genet Dev 4:823–831

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS (2001) Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2:986–991

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS (2003) Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays 25:930–939

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS (2004) RNA regulation: a new genetics? Nat Rev Genet 5:316–323

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS (2010) Linc-ing long noncoding RNAs and enhancer function. Dev Cell 19:485–486

    Article  CAS  PubMed  Google Scholar 

  • McBride JL, Pitzer MR, Boudreau RL et al (2011) Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington’s disease. Mol Ther 19:2152–2162

    Article  CAS  PubMed  Google Scholar 

  • McManus DD, Ambros V (2011) Circulating MicroRNAs in cardiovascular disease. Circulation 124:1908–1910

    Article  PubMed  Google Scholar 

  • Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467:86–90

    Article  CAS  PubMed  Google Scholar 

  • Mencia A, Modamio-Hoybjor S, Redshaw N et al (2009) Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet 41:609–613

    Article  CAS  PubMed  Google Scholar 

  • Mercer TR, Dinger ME, Bracken CP et al (2010a) Regulated post-transcriptional RNA cleavage diversifies the eukaryotic transcriptome. Genome Res 20:1639–1650

    Article  CAS  PubMed  Google Scholar 

  • Mercer TR, Qureshi IA, Gokhan S et al (2010b) Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci 11:14

    Article  PubMed  CAS  Google Scholar 

  • Mercer TR, Wilhelm D, Dinger ME et al (2011) Expression of distinct RNAs from 3′ untranslated regions. Nucleic Acids Res 39:2393–2403

    Article  CAS  PubMed  Google Scholar 

  • Miller BH, Wahlestedt C (2010) MicroRNA dysregulation in psychiatric disease. Brain Res 1338:89–99

    Article  CAS  PubMed  Google Scholar 

  • Milner RJ, Bloom FE, Lai C et al (1984) Brain-specific genes have identifier sequences in their introns. Proc Natl Acad Sci USA 81:713–717

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Robles J, Allende LM, Clemente J et al (2006) A novel RMRP mutation in a Spanish patient with cartilage-hair hypoplasia. Immunobiology 211:753–757

    Article  CAS  PubMed  Google Scholar 

  • Muntoni F, Wood MJ (2011) Targeting RNA to treat neuromuscular disease. Nat Rev Drug Discov 10:621–637

    Article  CAS  PubMed  Google Scholar 

  • Mus E, Hof PR, Tiedge H (2007) Dendritic BC200 RNA in aging and in Alzheimer’s disease. Proc Natl Acad Sci USA 104:10679–10684

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Naganuma T, Shioi G, Hirose T (2011) Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J Cell Biol 193:31–39

    Article  CAS  PubMed  Google Scholar 

  • Noller HF (1991) Ribosomes. Drugs and the RNA world. Nature 353:302–303

    Article  CAS  PubMed  Google Scholar 

  • Noller HF, Chaires JB (1972) Functional modification of 16S ribosomal RNA by kethoxal. Proc Natl Acad Sci USA 69:3115–3118

    Article  CAS  PubMed  Google Scholar 

  • Noller HF, Hoffarth V, Zimniak L (1992) Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256:1416–1419

    Article  CAS  PubMed  Google Scholar 

  • Numata K, Kanai A, Saito R et al (2003) Identification of putative noncoding RNAs among the RIKEN mouse full-length cDNA collection. Genome Res 13:1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin

    Google Scholar 

  • Okazaki Y, Furuno M, Kasukawa T et al (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:563–573

    Article  PubMed  Google Scholar 

  • Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE (1989) The origin of polynucleotide-directed protein synthesis. J Mol Evol 29:465–474

    Article  CAS  PubMed  Google Scholar 

  • Ozsolak F, Kapranov P, Foissac S et al (2010) Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 143:1018–1029

    Article  CAS  PubMed  Google Scholar 

  • Pang KC, Dinger ME, Mercer TR et al (2009) Genome-wide identification of long noncoding RNAs in CD8+ T cells. J Immunol 182:7738–7748

    Article  CAS  PubMed  Google Scholar 

  • Park CY, Choi YS, McManus MT (2010) Analysis of microRNA knockouts in mice. Hum Mol Genet 19:R169–R175

    Article  CAS  PubMed  Google Scholar 

  • Parker BJ, Moltke I, Roth A et al (2011) New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. Genome Res 21:1929–1943

    Article  CAS  PubMed  Google Scholar 

  • Pasmant E, Sabbagh A, Masliah-Planchon J et al (2011a) Role of noncoding RNA ANRIL in genesis of plexiform neurofibromas in neurofibromatosis type 1. J Natl Cancer Inst 103:1713–1722

    Article  CAS  PubMed  Google Scholar 

  • Pasmant E, Sabbagh A, Vidaud M et al (2011b) ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J 25:444–448

    Article  CAS  PubMed  Google Scholar 

  • Ploner A, Ploner C, Lukasser M et al (2009) Methodological obstacles in knocking down small noncoding RNAs. RNA 15:1797–1804

    Article  CAS  PubMed  Google Scholar 

  • Prestayko AW, Busch H (1968) Low molecular weight RNA of the chromatin fraction from Novikoff hepatoma and rat liver nuclei. Biochim Biophys Acta 169:327–337

    Article  CAS  PubMed  Google Scholar 

  • Project AET (2009) Post-transcriptional processing generates a diversity of 5'-modified long and short RNAs. Nature 457:1028–1032, http://www.ncbi.nlm.nih.gov/pubmed?term=processing%20generates%20a%20diversity%20of%205%27-modified%20long%20AND%202009

    Article  CAS  Google Scholar 

  • Qureshi IA, Mattick JS, Mehler MF (2010) Long non-coding RNAs in nervous system function and disease. Brain Res 1338:20–35

    Article  CAS  PubMed  Google Scholar 

  • Raabe CA, Sanchez CP, Randau G et al (2010) A global view of the nonprotein-coding transcriptome in Plasmodium falciparum. Nucleic Acids Res 38:608–617

    Article  CAS  PubMed  Google Scholar 

  • Ravasi T, Suzuki H, Pang KC et al (2006) Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res 16:11–19

    Article  CAS  PubMed  Google Scholar 

  • Rederstorff M, Huttenhofer A (2010) Small non-coding RNAs in disease development and host–pathogen interactions. Curr Opin Mol Ther 12:684–694

    CAS  PubMed  Google Scholar 

  • Rederstorff M, Bernhart SH, Tanzer A et al (2010) RNPomics: defining the ncRNA transcriptome by cDNA library generation from ribonucleo-protein particles. Nucleic Acids Res 38:e113

    Article  PubMed  CAS  Google Scholar 

  • Rich A (1962) On the problems of evolution and biochemical information transfer. In: Pullman B, Kasha M (eds) Horizons in biochemistry. Academic, New York, pp 103–126

    Google Scholar 

  • Ridanpaa M, van Eenennaam H, Pelin K et al (2001) Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell 104:195–203

    Article  CAS  PubMed  Google Scholar 

  • Rinn JL, Euskirchen G, Bertone P et al (2003) The transcriptional activity of human chromosome 22. Genes Dev 17:529–540

    Article  CAS  PubMed  Google Scholar 

  • Robertson MP, Joyce GF (2011) The origins of the RNA world. In: Atkins JF, Gesteland RF, Cech TR (eds) RNA worlds. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 21–42

    Google Scholar 

  • Rodin AS, Szathmary E, Rodin SN (2011) On origin of genetic code and tRNA before translation. Biol Direct 6:14

    Article  CAS  PubMed  Google Scholar 

  • Rottiers and Näär (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13:239–250

    Google Scholar 

  • Runte M, Varon R, Horn D et al (2005) Exclusion of the C/D box snoRNA gene cluster HBII-52 from a major role in Prader–Willi syndrome. Hum Genet 116:228–230

    Article  CAS  PubMed  Google Scholar 

  • Ruvkun G (2001) Molecular biology. Glimpses of a tiny RNA world. Science 294:797–799

    Article  CAS  PubMed  Google Scholar 

  • Ruvkun G, Wightman B, Ha I (2004) The 20 years it took to recognize the importance of tiny RNAs. Cell 116:S93–S96, 2 p following S96

    Article  CAS  PubMed  Google Scholar 

  • Saxe JP, Lin H (2011) Small noncoding RNAs in the germline. Cold Spring Harb Perspect Biol 3:a002717

    Article  PubMed  CAS  Google Scholar 

  • Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91:827–887

    Article  CAS  PubMed  Google Scholar 

  • Schmitz J, Zemann A, Churakov G et al (2008) Retroposed SNOfall—a mammalian-wide comparison of platypus snoRNAs. Genome Res 18:1005–1010

    Article  CAS  PubMed  Google Scholar 

  • Seto AG (2010) The road toward microRNA therapeutics. Int J Biochem Cell Biol 42:1298–1305

    Article  CAS  PubMed  Google Scholar 

  • Shantikumar S, Caporali A, Emanueli C (2011) Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res 93:583–593

    Google Scholar 

  • Sharp PA (2009) The centrality of RNA. Cell 136:577–580

    Article  CAS  PubMed  Google Scholar 

  • Sibilia M, Wagner EF (1995) Strain-dependent epithelial defects in mice lacking the EGF receptor. Science 269:234–238

    Article  CAS  PubMed  Google Scholar 

  • Skryabin BV, Sukonina V, Jordan U et al (2003) Neuronal untranslated BC1 RNA: targeted gene elimination in mice. Mol Cell Biol 23:6435–6441

    Article  CAS  PubMed  Google Scholar 

  • Skryabin BV, Gubar LV, Seeger B et al (2007) Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation. PLoS Genet 3:e235

    Article  PubMed  CAS  Google Scholar 

  • Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469:336–342

    Article  CAS  PubMed  Google Scholar 

  • Soukup GA (2009) Little but loud: small RNAs have a resounding affect on ear development. Brain Res 1277:104–114

    Article  CAS  PubMed  Google Scholar 

  • Sousa C, Johansson C, Charon C et al (2001) Translational and structural requirements of the early nodulin gene enod40, a short-open reading frame-containing RNA, for elicitation of a cell-specific growth response in the alfalfa root cortex. Mol Cell Biol 21:354–366

    Article  CAS  PubMed  Google Scholar 

  • Struck JC, Vogel DW, Hartmann RK et al (1986) Isolation and characterization of a novel RNA from Bacillus stearothermophilus. Biochem Intl 12:603–611

    CAS  Google Scholar 

  • Su WY, Xiong H, Fang JY (2010) Natural antisense transcripts regulate gene expression in an epigenetic manner. Biochem Biophys Res Commun 396:177–181

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe JG, Milner RJ, Gottesfeld JM et al (1984a) Identifier sequences are transcribed specifically in brain. Nature 308:237–241

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe JG, Milner RJ, Gottesfeld JM, Reynolds W (1984b) Control of neuronal gene expression. Science 225:1308–1315

    Article  CAS  PubMed  Google Scholar 

  • Szathmary E, Smith JM (1995) The major evolutionary transitions. Nature 374:227–232

    Article  CAS  PubMed  Google Scholar 

  • Taft RJ, Pang KC, Mercer TR et al (2010a) Non-coding RNAs: regulators of disease. J Pathol 220:126–139

    Article  CAS  PubMed  Google Scholar 

  • Taft RJ, Simons C, Nahkuri S et al (2010b) Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nat Struct Mol Biol 17:1030–1034

    Article  CAS  PubMed  Google Scholar 

  • Tang TH, Bachellerie JP, Rozhdestvensky T et al (2002) Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci USA 99:7536–7541

    Article  CAS  PubMed  Google Scholar 

  • Tang TH, Polacek N, Zywicki M et al (2005) Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus. Mol Microbiol 55:469–481

    Article  CAS  PubMed  Google Scholar 

  • Tautz D, Domazet-Loso T (2011) The evolutionary origin of orphan genes. Nat Rev Genet 12:692–702

    Article  CAS  PubMed  Google Scholar 

  • Thiel CT, Rauch A (2011) The molecular basis of the cartilage-hair hypoplasia-anauxetic dysplasia spectrum. Best Pract Res Clin Endocrinol Metab 25:131–142

    Article  CAS  PubMed  Google Scholar 

  • Thomason MK, Storz G (2010) Bacterial antisense RNAs: how many are there, and what are they doing? Annu Rev Genet 44:167–188

    Article  CAS  PubMed  Google Scholar 

  • Tiedge H, Brosius J (1996) Translational machinery in dendrites of hippocampal neurons in culture. J Neurosci 16:7171–7181

    CAS  PubMed  Google Scholar 

  • Tiedge H, Fremeau RT, Weinstock PH et al (1991) Dendritic location of neural BC1 RNA. Proc Natl Acad Sci USA 88:2093–2097

    Article  CAS  PubMed  Google Scholar 

  • Tiedge H, Chen W, Brosius J (1993) Primary structure, neural-specific expression, and dendritic location of human BC200 RNA. J Neurosci 13:2382–2390

    CAS  PubMed  Google Scholar 

  • Tijsterman M, Ketting RF, Plasterk RH (2002) The genetics of RNA silencing. Annu Rev Genet 36:489–519

    Article  CAS  PubMed  Google Scholar 

  • Tsai MC, Manor O, Wan Y et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693

    Article  CAS  PubMed  Google Scholar 

  • Tsai MC, Spitale RC, Chang HY (2011) Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res 71:3–7

    Article  CAS  PubMed  Google Scholar 

  • Tyagi S (1981) Origins of translation: the hypothesis of permanently attached adaptors. Orig Life 11:343–351

    Article  CAS  PubMed  Google Scholar 

  • van Bakel H, Nislow C, Blencowe BJ et al (2010) Most “dark matter” transcripts are associated with known genes. PLoS Biol 8:e1000371

    Article  PubMed  CAS  Google Scholar 

  • van Kouwenhove M, Kedde M, Agami R (2011) MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 11:644–656

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O (2002) RNA silencing: small RNAs as ubiquitous regulators of gene expression. Curr Opin Plant Biol 5:444–451

    Article  CAS  PubMed  Google Scholar 

  • Volff JN, Brosius J (2007) Modern genomes with retro-look: retrotransposed elements, retroposition and the origin of new genes. Genome Dyn 3:175–190

    Article  CAS  PubMed  Google Scholar 

  • Walder JA, Walder RY, Heller MJ et al (1979) Complementary carrier peptide synthesis: general strategy and implications for prebiotic origin of peptide synthesis. Proc Natl Acad Sci USA 76:51–55

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Iacoangeli A, Popp S et al (2002) Dendritic BC1 RNA: functional role in regulation of translation initiation. J Neurosci 22:10232–10241

    CAS  PubMed  Google Scholar 

  • Wang H, Iacoangeli A, Lin D et al (2005) Dendritic BC1 RNA in translational control mechanisms. J Cell Biol 171:811–821

    Article  CAS  PubMed  Google Scholar 

  • Wang KC, Yang YW, Liu B et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–124

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Yamamoto M (1994) S. pombe mei2+ encodes an RNA-binding protein essential for premeiotic DNA synthesis and meiosis I, which cooperates with a novel RNA species meiRNA. Cell 78:487–498

    Article  CAS  PubMed  Google Scholar 

  • Weiner AM, Maizels N (1987) tRNA-like structures tag the 3′ ends of genomic RNA molecules for replication: implications for the origin of protein synthesis. Proc Natl Acad Sci USA 84:7383–7387

    Article  CAS  PubMed  Google Scholar 

  • Werner A, Sayer JA (2009) Naturally occurring antisense RNA: function and mechanisms of action. Curr Opin Nephrol Hypertens 18:343–349

    Article  CAS  PubMed  Google Scholar 

  • Werner A, Swan D (2010) What are natural antisense transcripts good for? Biochem Soc Trans 38:1144–1149

    Article  CAS  PubMed  Google Scholar 

  • Werner A, Carlile M, Swan D (2009) What do natural antisense transcripts regulate? RNA Biol 6:43–48

    Article  CAS  PubMed  Google Scholar 

  • Westhof E, Filipowicz W (2005) From RNAi to epigenomes: how RNA rules the world. Chembiochem 6:441–443

    Article  CAS  PubMed  Google Scholar 

  • Woese CR (1967) The genetic code: the molecular basis for genetic expression. Harper and Row, New York

    Google Scholar 

  • Woese CR (1980) Just So Stories and Rube Goldberg machines: speculations on the origin of the protein synthetic machinery. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: structure, function and genetics. University Park Press, Baltimore, pp 357–373

    Google Scholar 

  • Woese CR (2001) Translation: in retrospect and prospect. RNA 7:1055–1067

    Article  CAS  PubMed  Google Scholar 

  • Wong JW (2010) MicroRNA-induced silencing of glioma progression. J Neurosci 30:3868–3869

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Adamson TE, Resnick JL et al (1998) A mouse model for Prader–Willi syndrome imprinting-centre mutations. Nat Genet 19:25–31

    Article  CAS  PubMed  Google Scholar 

  • Yasuda J, Hayashizaki Y (2008) The RNA continent. Adv Cancer Res 99:77–112

    Article  CAS  PubMed  Google Scholar 

  • Zemann A, op de Bekke A, Kiefmann M et al (2006) Evolution of small nucleolar RNAs in nematodes. Nucleic Acids Res 34:2676–2685

    Article  CAS  PubMed  Google Scholar 

  • Zhong J, Chuang SC, Bianchi R et al (2009) BC1 regulation of metabotropic glutamate receptor-mediated neuronal excitability. J Neurosci 29:9977–9986

    Article  CAS  PubMed  Google Scholar 

  • Zieve G, Penman S (1976) Small RNA species of the HeLa cell: metabolism and subcellular localization. Cell 8:19–31

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Brosius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brosius, J. (2012). RNAissance. In: Erdmann, V., Barciszewski, J. (eds) From Nucleic Acids Sequences to Molecular Medicine. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27426-8_1

Download citation

Publish with us

Policies and ethics