Skip to main content

On a Linear Programming Approach to the Discrete Willmore Boundary Value Problem and Generalizations

  • Conference paper
Curves and Surfaces (Curves and Surfaces 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6920))

Included in the following conference series:

Abstract

We consider the problem of finding (possibly non connected) discrete surfaces spanning a finite set of discrete boundary curves in the three-dimensional space and minimizing (globally) a discrete energy involving mean curvature. Although we consider a fairly general class of energies, our main focus is on the Willmore energy, i.e. the total squared mean curvature. Most works in the literature have been devoted to the approximation of a surface evolving by the Willmore flow and, in particular, to the approximation of the so-called Willmore surfaces, i.e., the critical points of the Willmore energy. Our purpose is to address the delicate task of approximating global minimizers of the energy under boundary constraints. The main contribution of this work is to translate the nonlinear boundary value problem into an integer linear program, using a natural formulation involving pairs of elementary triangles chosen in a pre-specified dictionary and allowing self-intersection. The reason for such strategy is the well-known existence of algorithms that can compute global minimizers of a large class of linear optimization problems, however at a significant computational and memory cost. The case of integer linear programming is particularly delicate and usual strategies consist in relaxing the integral constraint x ∈ {0,1} into x ∈ [0,1] which is easier to handle. Our work focuses essentially on the connection between the integer linear program and its relaxation. We prove that:

  • One cannot guarantee the total unimodularity of the constraint matrix, which is a sufficient condition for the global solution of the relaxed linear program to be always integral, and therefore to be a solution of the integer program as well;

  • Furthermore, there are actually experimental evidences that, in some cases, solving the relaxed problem yields a fractional solution.

These facts indicate that the problem cannot be tackled with classical linear programming solvers, but only with pure integer linear solvers. Nevertheless, due to the very specific structure of the constraint matrix here, we strongly believe that it should be possible in the future to design ad-hoc integer solvers that yield high-definition approximations to solutions of several boundary value problems involving mean curvature, in particular the Willmore boundary value problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Universität Berlin (2007)

    Google Scholar 

  2. Almgren, F., Taylor, J.E., Wang, L.-H.: Curvature-driven flows: a variational approach. SIAM Journal on Control and Optimization 3, 387–438 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amini, A.A., Weymouth, T.E., Jain, R.C.: Using dynamic programming for solving variational problems in vision. IEEE Trans. on Patt. Anal. and Mach. Intell. 12(9), 855–867 (1990)

    Article  Google Scholar 

  4. Bobenko, A.I., Schröder, P.: Discrete Willmore Flow. In: Eurographics Symposium on Geometry Processing (2005)

    Google Scholar 

  5. Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-cut/Max-flow Algorithms for Energy Minimization in Vision. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, pp. 359–374. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Brakke, K.A.: The surface evolver. Experimental Mathematics 1(2), 141–165 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Camion, P.: Characterization of totally unimodular matrices. Proc. Am. Math. Soc. 16(5), 1068–1073 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., Rusu, R.: A finite element method for surface restoration with smooth boundary conditions. Computer Aided Geometric Design 21(5), 427–445 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Droske, M., Rumpf, M.: A level set formulation for Willmore flow. Interfaces and Free Boundaries 6(3) (2004)

    Google Scholar 

  10. Dziuk, G.: Computational parametric Willmore flow. Numer. Math. 111, 55–80 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Esedoglu, S., Ruuth, S., Tsai, R.Y.: Threshold dynamics for high order geometric motions. Technical report, UCLA CAM report (2006)

    Google Scholar 

  12. Ford, L.R., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  13. Grady, L.: Minimal surfaces extend shortest path segmentation methods to 3D. IEEE Trans. on Patt. Anal. and Mach. Intell. 32(2), 321–334 (2010)

    Article  Google Scholar 

  14. Grzibovskis, R., Heintz, A.: A convolution-thresholding scheme for the Willmore flow. Technical Report Preprint 34, Chalmers University of Technology, Göteborg, Sweden (2003)

    Google Scholar 

  15. Hildebrandt, K., Polthier, K., Wardetzky, M.: On the convergence of metric and geometric properties of polyhedral surfaces. Geometriae Dedicata 123, 89–112 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hsu, L., Kusner, R., Sullivan, J.: Minimizing the squared mean curvature integral for surfaces in space forms. Experimental Mathematics 1(3), 191–207 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kusner, R.: Comparison surfaces for the Willmore problem. Pacific J. Math. 138(2) (1989)

    Google Scholar 

  18. Luckhaus, S., Sturzenhecker, T.: Implicit time discretization for the mean curvature flow equation. Calculus of Variations and Partial Differential Equations 3(2), 253–271 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mayer, U.F., Simonett, G.: A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the willmore flow. Interfaces and Free Boundaries 4, 89–109 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Morvan, J.-M.: Generalized Curvatures, 1st edn. Springer Publishing Company, Incorporated (2008)

    Google Scholar 

  21. Olischläger, N., Rumpf, M.: Two step time discretization of Willmore flow. In: Proc. 13th IMA Int. Conf. on Math. of Surfaces, pp. 278–292. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Pinkall, U.: Hopf tori in S 3. Invent. Math. 81, 379–386 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pinkall, U., Sterling, I.: Willmore surfaces. The Mathematical Intelligencer 9(2) (1987)

    Google Scholar 

  24. Polthier, K.: Polyhedral surfaces of constant mean curvature. Habilitation thesis, TU Berlin (2002)

    Google Scholar 

  25. Polthier, K.: Computational aspects of discrete minimal surfaces. In: Global Theory of Minimal Surfaces, Proc. of the Clay Mathematics Institute Summer School (2005)

    Google Scholar 

  26. Rusu, R.: An algorithm for the elastic flow of surfaces. Interfaces and Free Boundaries 7, 229–239 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schätzle, R.: The Willmore boundary problem. Calc. Var. Part. Diff. Equ. 37, 275–302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schrijver, A.: Theory of linear and integer programming. Wiley-Interscience series in discrete mathematics. John Wiley and Sons, Chichester (1994)

    MATH  Google Scholar 

  29. Simon, L.: Lectures on Geometric Measure Theory. In: Proc. of the Center for Mathematical Analysis, vol. 3, Australian National University (1983)

    Google Scholar 

  30. Sullivan, J.M.: A Crystalline Approximation Theorem for Hypersurfaces. PhD thesis, Princeton University, Princeton (1992)

    Google Scholar 

  31. Sullivan, J.M.: Computing hypersurfaces which minimize surface energy plus bulk energy. In: Motion by Mean Curvature and Related Topics, pp. 186–197 (1994)

    Google Scholar 

  32. Truemper, K.: Algebraic Characterizations of Unimodular Matrices. SIAM J. Applied Math. 35(2), 328–332 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. Verdera, J., Caselles, V., Bertalmio, M., Sapiro, G.: Inpainting surface holes. In: Int. Conference on Image Processing, pp. 903–906 (2003)

    Google Scholar 

  34. Wardetzky, M., Bergou, M., Harmon, D., Zorin, D., Grinspun, E.: Discrete quadratic curvature energies. Computer Aided Geometric Design 24(8-9), 499–518 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schoenemann, T., Masnou, S., Cremers, D. (2012). On a Linear Programming Approach to the Discrete Willmore Boundary Value Problem and Generalizations. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27413-8_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27412-1

  • Online ISBN: 978-3-642-27413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics