Skip to main content

Nonlinear L 1 C 1 Interpolation: Application to Images

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6920))

Abstract

In this article, we address the problem of interpolating data points lying on a regular grid by C 1-continuous L 1-bicubic spline surfaces. Our algorithm is based on a local univariate L 1 minimization method which enable us to calculate first derivative values for C 1-cubic spline curves. In order to construct the interpolation surface, we calculate four derivative values at each data point using this local method. At is was shown in [17], our local interpolation L 1 cubic spline curve algorithm preserves well the shape of the data even for abrupt changes.The sequential computational complexity of this local method is linear and the parallel computational complexity is O(1). Consequently, we can address in this manner data on large grids. In order to keep this linear complexity for spline surface interpolation, we define an interpolation scheme based on four linear directions so as to construct our L 1-bicubic surface. Some image interpolation examples show the efficiency of this non linear interpolation scheme.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auquiert, P., Gibaru, O., Nyiri, E.: C 1 and C 2 -continuous polynomial parametric L p splines \(\left( p\geq1\right) \), Comp. Aided Geom. Design 24, 373–394 (2007)

    Article  MATH  Google Scholar 

  2. Auquiert, P., Gibaru, O., Nyiri, E.: On the cubic L 1 spline interpolant to the Heaviside function. Numer. Algor. 46, 321–332 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Azé, D.: Eléments d’analyse convexe et variationnelle, Ellipses (1997)

    Google Scholar 

  4. Cheng, H., Fang, S.-C., Lavery, J.E.: Univariate cubic L 1 splines—A geometric programming approach. Math. Methods Oper. Res. 56, 197–229 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng, H., Fang, S.-C., Lavery, J.E.: An efficient algorithm for generating univariate cubic L 1 splines. Comput. Optim. Appl. 29, 219–253 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, H., Fang, S.-C., Lavery, J.E.: Shape-preserving properties of univariate cubic L 1 splines. J. Comput. Appl. Math. 174, 361–382 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chuah, C.-S., Leou, J.-J.: An adaptive image interpolation algorithm for image/video processing. Pattern Recognition 34, 2383–2393 (2001); Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan 621, Republic of China Received November 20, 1998; accepted October 24, 2000

    Article  MATH  Google Scholar 

  8. Gilsinn, D.E., Lavery, J.E.: Shape-preserving, multiscale fitting of bivariate data by cubic L 1 smoothing splines. In: Chui, C.K., Schumaker, L.L., Stöckler, J. (eds.) Approximation Theory X:Wavelets, Splines, and Applications, pp. 283–293. Vanderbilt University Press, Nashville (2002)

    Google Scholar 

  9. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  10. Lavery, J.E.: Univariate cubic L p splines and shape-preserving, multiscale interpolation by univariate cubic L 1 splines. Comput. Aided Geom. Design 17, 319–336 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lavery, J.E.: Shape-preserving, multiscale fitting of univariate data by cubic L 1 smoothing splines. Comput. Aided Geom. Design 17, 715–727 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lavery, J.E.: Shape-preserving, multiscale interpolation by bi- and multivariate cubic L 1 splines. Comput. Aided Geom. Design 18, 321–343 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lavery, J.E.: The state of the art in shape preserving, multiscale modeling by L 1 splines. In: Lucian, M.L., Neamtu, M. (eds.) Proceedings of SIAM Conference on Geometric Design Computing, pp. 365–376. Nashboro Press, Brentwood (2004)

    Google Scholar 

  14. Lavery, J.E.: Shape-preserving, first-derivative-based parametric and non parametric cubic L 1 spline curves. Comput. Aided Geom. Design 23, 276–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lavery, J.E.: Shape-preserving univariate cubic and higher-degree L 1 splines with function-value-based and multistep minimization principles. Computer Aided Geom. Design 26, 1–16 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lustig, I.J., Marsten, R.E., Shanno, D.F.: Interior point methods for linear programming: computational state of the art. ORSA J. Comput. 6, 1–14 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nyiri, E., Gibaru, O., Auquiert, P.: Fast \(L^k_1C^{k} \) polynomial spline interpolation algorithm with shape-preserving properties. Comp. Aided Geom. Design 28, 65–74 (2010/2011)

    Article  MATH  Google Scholar 

  18. Niu, Y., Liu, F., Li, X., Gleicher, M.: Image resizing via non-homogeneous warping. Multimed Tools Appl. (2010); Published Online

    Google Scholar 

  19. Unser, M., Aldroubi, A., Eden, M.: Fast-B-SplineTransforms for Continuous Image Representation and Interpolation. IEEE Transsactions on Pattern Analysis and Machine Intelligence 13(3), 277–285 (1991)

    Article  Google Scholar 

  20. Vanderbei, R.J.: Affine-scaling for linear programs with free variables. Math. Program. 43, 31–44 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vanderbei, R.J.: LOQO An interior point code for quadratic programming, Statistics and Operations Research Technical Report SOR-94-15, Princeton University (1995)

    Google Scholar 

  22. Vanderbei, R.J.: Linear Programming: Foundations and Extensions, 2nd edn. Kluwer Academic, Boston (2001)

    Book  MATH  Google Scholar 

  23. Vanderbei, R.J., Meketon, M.J., Freedman, B.A.: A modification of Karmarkar’s linear programming algorithm. Algorithmica 1, 395–407 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. van Ouwerkerk, J.D.: Image super-resolution survey. Image and Vision Computing 24, 1039–1052 (2006)

    Article  Google Scholar 

  25. Wang, Y., Fang, S.-C., Lavery, J.E.: A compressed primal-dual method for generating bivariate cubic L 1 splines. Journal of Computational and Applied Mathematics 201, 69–87 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nyiri, E., Gibaru, O., Auquiert, P. (2012). Nonlinear L 1 C 1 Interpolation: Application to Images. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27413-8_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27412-1

  • Online ISBN: 978-3-642-27413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics