Skip to main content

Adaptive Optics in Ocular Optical Coherence Tomography

  • Chapter
  • First Online:
Optical Coherence Tomography

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1847 Accesses

Abstract

Adaptive optics (AO) is a technology for correcting aberrations in real time. When applied to the human eye, it has the potential of perfect imaging, from an optical perspective, the retina. Once aberrations from the eye have been compensated, theoretical resolution achievable in the living retina is 2–3 μm. Therefore, individual cells and most of the morphological structures on the retina could be in principle imaged. Optical coherence tomography (OCT) has benefitted from this novel technique since 2004. The singularities of OCT, mainly the confocal detection and the mandatory use of broadband spectral light sources, imposes particular methods when applying AO. In a few years, many advances in the combination of AO with OCT have emerged. The in vivo images obtained with that modality have unveiled amazing details of the intraretinal tissue. In this chapter, both the theory and the practice of merging AO with OCT, with special emphasis on ultrahigh-resolution (UHR) OCT, will be presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Google Scholar 

  2. W. Drexler, U. Morgner, F.X. Kärtner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, J.G. Fujimoto, In vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 24(17), 1221–1223 (1999)

    Article  ADS  Google Scholar 

  3. W. Drexler, U. Morgner, R.K. Ghanta, F.X. Kärtner, J.S. Schuman, J.G. Fujimoto, Ultrahigh resolution ophthalmic optical coherence tomography. Nat. Med. 7(4), 502–507 (2001)

    Article  Google Scholar 

  4. W. Drexler, Ultrahigh resolution optical coherence tomography. J. Biomed. Opt. 9(1), 47–74 (2004)

    Article  ADS  Google Scholar 

  5. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E.M. Anger, P.K. Ahnelt, M. Stur, J.E. Morgan, A. Cowey, G. Jung, T. Le, A. Stingl, Compact, lowcost TiAl2O3 laser for in vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 28(11), 905–907 (2003)

    Article  ADS  Google Scholar 

  6. A.F. Fercher, W. Drexler, C.K. Hitzenberger, T. Lasser, Optical coherence tomography—principles and applications. Rep. Prog. Phys. 66, 239–303 (2003)

    Article  ADS  Google Scholar 

  7. P. Artal, A. Benito, J. Tabernero, The human eye is an example of robust optical design. J. Vis. 6(1), 1–7 (2006)

    Article  Google Scholar 

  8. P. Artal, A. Guirao, E. Berrio, D.R. Williams, Compensation of corneal aberrations by the internal optics in the human eye. J. Vision 1(1), 1–8 (2001)

    Article  Google Scholar 

  9. J. Tabernero, A. Benito, E. Alcón, P. Artal, Mechanism of compensation of aberrations in the human eye. J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 24(10), 3274–3283 (2007)

    Article  ADS  Google Scholar 

  10. P. Artal, J. Tabernero, The eye’s aplanatic answer. Nat. Photon. 2, 586–589 (2008)

    Article  Google Scholar 

  11. P. Artal, E. Berrio, A. Guirao, P. Piers, Contribution of the cornea and internal surfaces to the change of ocular aberrations with age. J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 19(1), 137–143 (2002)

    Article  ADS  Google Scholar 

  12. G.M. Pérez, S. Manzanera, P. Artal, Impact of scattering and spherical aberration in contrast sensitivity. J. Vision 9(3), 19.1–19.10 (2009)

    Article  Google Scholar 

  13. J.K. Ijspeert, P.W. de Waard, T.J. van den Berg, P.T. de Jong, The intraocular straylight function in 129 healthy volunteers; Dependence on angle, age and pigmentation. Vision Res. 30(5), 699–707 (1990)

    Article  Google Scholar 

  14. J. Liang, D.R. Williams, Aberrations and retinal image quality of the normal human eye. J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 14(11), 2873–2883 (1997)

    Article  ADS  Google Scholar 

  15. F. Vargas-Martín, P.M. Prieto, P. Artal, Correction of the aberrations in the human eye with a liquid crystal spatial light modulator: limits to the performance. J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 15(9), 2552–2562 (1998)

    Article  ADS  Google Scholar 

  16. E.J. Fernández, I. Iglesias, P. Artal, Closed-loop adaptive optics in the human eye. Opt. Lett. 26(10), 746–748 (2001)

    Article  ADS  Google Scholar 

  17. H. Hofer, L. Chen, G.Y. Yoon, B. Singer, Y. Yamauchi, D.R. Williams, Improvement in retinal image quality with dynamic correction of the eye’s aberrations. Opt. Express. 8(11), 631–643 (2001)

    Article  ADS  Google Scholar 

  18. E.J. Fernández, P. Artal, Membrane deformable mirror for adaptive optics: performance limits in visual optics. Opt. Express. 11(9), 1056–1069 (2003)

    Article  ADS  Google Scholar 

  19. E.J. Fernández, P.M. Prieto, P. Artal, Binocular adaptive optics visual simulator. Opt. Lett. 34(17), 2628–2630 (2009)

    Article  ADS  Google Scholar 

  20. E.J. Fernández, P.M. Prieto, P. Artal, Adaptive optics binocular visual simulator to study stereopsis in the presence of aberrations. J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 27(11), A48–A55 (2010)

    Article  ADS  Google Scholar 

  21. J. Liang, D.R. Williams, D.T. Miller, Supernormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 14(11), 2884–2892 (1997)

    Article  ADS  Google Scholar 

  22. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, M. Campbell, Adaptive optics scanning laser ophthalmoscopy. Opt. Express. 10(9), 405–412 (2002)

    ADS  Google Scholar 

  23. A.G. Podoleanu, D.A. Jackson, Noise analysis of a combined optical coherence tomograph and a confocal scanning ophthalmoscope. Appl. Opt. 38(10), 2116–2127 (1999)

    Article  ADS  Google Scholar 

  24. A.G. Podoleanu, G.M. Dobre, R.G. Cucu, R.B. Rosen, Sequential optical coherence tomography and confocal imaging. Opt. Lett. 29(4), 364–366 (2004)

    Article  ADS  Google Scholar 

  25. S. Kimura, T. Wilson, Confocal scanning optical microscope using single-mode fiber for signal detection. Appl. Opt. 30(16), 2143–2150 (1991)

    Article  ADS  Google Scholar 

  26. T. Wilson (ed.), Confocal Microscopy. (Academic, London 1990)

    Google Scholar 

  27. T. Wilson, A.R. Carlini, Size of the detector in confocal imaging systems. Opt. Lett. 12(4), 227–229 (1987)

    Article  ADS  Google Scholar 

  28. E. Fernández, W. Drexler, Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography. Opt. Express. 13(20), 8184–8197 (2005)

    Article  ADS  Google Scholar 

  29. T. Wilson, C.J.R. Sheppard, Theory and Practice of Scanning Optical Microscopy, 1st edn (Academic, New York, 1984)

    Google Scholar 

  30. M. Born, E. Wolf, Principles of Optics, 7th ed (Pergamon, Oxford, UK, 1999)

    Google Scholar 

  31. R.J. Noll, Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am.66(3), 207–211 (1976)

    Google Scholar 

  32. L.N. Thibos, R.A. Applegate, J.T. Schwiegerling, R. Webb, VSIA Standards Taskforce Members, in Standards for Reporting the Optical Aberrations of the Eyes, ed. by V. Lakshminarayanan. OSA Trends in Optics and Photonics, vol 35 (Optical Society of America, Washington, DC, 2000), pp. 232–244

    Google Scholar 

  33. R.E. Bedford, G. Wyszecki, Axial chromatic aberration of the human eye. J. Opt. Soc. Am. 47(6), 564–565 (1957)

    Article  Google Scholar 

  34. W.N. Charman, J.A. Jennings, Objective measurements of the longitudinal chromatic aberration of the human eye. Vision Res. 16(9), 999–1005 (1976)

    Article  Google Scholar 

  35. P.A. Howarth, A. Bradley, The longitudinal chromatic aberration of the human eye and its correction. Vision Res. 26(2), 361–366 (1986)

    Article  Google Scholar 

  36. L.N. Thibos, M. Ye, X. Zhang, A. Bradley, The chromatic eye: a new reduce-eye model of ocular chromatic aberration in humans. Appl. Opt. 31(19), 3594–3600 (1992)

    Article  ADS  Google Scholar 

  37. H.L. Liou, N.A. Brennan, Anatomically accurate, finite model eye for optical modeling. J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 14(8), 1684–1695 (1997)

    Article  ADS  Google Scholar 

  38. E. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, P. Artal, Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser. Opt. Express. 13(2), 400–409 (2005)

    Article  ADS  Google Scholar 

  39. D.A. Atchison, G. Smith, Chromatic dispersions of the ocular media of human eyes. J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 22(1), 29–37 (2005)

    Article  ADS  Google Scholar 

  40. S. Manzanera, C. Canovas, P.M. Prieto, P. Artal, A wavelength tunable wavefront sensor for the human eye. Opt. Express. 16(11), 7748–7755 (2008)

    Article  ADS  Google Scholar 

  41. E.J. Fernández, P. Artal, Ocular aberrations up to the infrared range: from 632.8 to 1070 nm. Opt. Express. 16(26), 21199–21208 (2008)

    Google Scholar 

  42. D.T. Miller, J. Qu, R.S. Jonnal, K. Thorn, Coherence gating and adaptive optics in the eye, in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, ed. by Valery V. Tuchin, Joseph A. Izatt, James G. Fujimoto, vol 4956 (Proc. SPIE, Bellingham, WA, 2003), pp. 65–72

    Google Scholar 

  43. B. Hermann, E.J. Fernández, A. Unterhuber, H. Sattmann, A.F. Fercher, W. Drexler, P.M. Prieto, P. Artal, Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt. Lett. 29(18), 2142–2144 (2004)

    Article  ADS  Google Scholar 

  44. J. Liang, B. Grimm, S. Goelz, J.F. Bille, Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wavefront sensor. J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 11(7), 1949–1957 (1994)

    Article  ADS  Google Scholar 

  45. P.M. Prieto, F. Vargas-Martín, S. Goelz, P. Artal, Analysis of the performance of the Hartmann–Shack sensor in the human eye. J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 17(8), 1388–1398 (2000)

    Article  ADS  Google Scholar 

  46. F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117(1–2), 43–48 (1995)

    Article  ADS  Google Scholar 

  47. M. Choma, M. Sarunic, C. Yang, J. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express. 11(18), 2183–2189 (2003)

    Article  ADS  Google Scholar 

  48. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A.F. Fercher, In-vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 7(3), 457–463 (2002)

    Article  ADS  Google Scholar 

  49. R. Leitgeb, C. Hitzenberger, A. Fercher, Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express. 11(8), 889–894 (2003)

    Google Scholar 

  50. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28(21), 2067–2069 (2003)

    Article  ADS  Google Scholar 

  51. Y. Zhang, J. Rha, R. Jonnal, D. Miller, Adaptive optics spectral optical coherence tomography for imaging the living retina. Opt. Express. 13(12), 4792–4811 (2005)

    Article  ADS  Google Scholar 

  52. E.J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P.M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler, Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator. Vision Res. 45(28), 3432–3444 (2005)

    Article  Google Scholar 

  53. P. Prieto, E. Fernández, S. Manzanera, P. Artal, Adaptive optics with a programmable phase modulator: applications in the human eye. Opt. Express. 12(17), 4059–4071 (2004)

    Article  ADS  Google Scholar 

  54. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E.M. Anger, P.K. Ahnelt, M. Stur, J.E. Morgan, A. Cowey, G. Jung, T. Le, A. Stingl, Compact, low-cost TiAl2O3 laser for in vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 28(11), 905–907 (2003)

    Article  ADS  Google Scholar 

  55. E.J. Fernández, P.M. Prieto, P. Artal, Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator. Opt. Express. 17(13), 11013–11025 (2009)

    Article  ADS  Google Scholar 

  56. R.J. Zawadzki, S.M. Jones, S.S. Olivier, M. Zhao, B.A. Bower, J.A. Izatt, S. Choi, S. Laut, J.S. Werner, Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt. Express. 13(21), 8532–8546 (2005)

    Article  ADS  Google Scholar 

  57. R.J. Zawadzki, S.S. Choi, S.M. Jones, S.S. Oliver, J.S. Werner, Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions. J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 24(5), 1373–1383 (2007)

    Article  ADS  Google Scholar 

  58. C. Li, N. Sredar, K.M. Ivers, H. Queener, J. Porter, A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system. Opt. Express. 18(16), 16671–16684 (2010)

    Article  Google Scholar 

  59. D. Merino, C. Dainty, A. Bradu, A.G. Podoleanu, Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy. Opt. Express. 14(8), 3345–3353 (2006)

    Article  ADS  Google Scholar 

  60. M. Pircher, R.J. Zawadzki, J.W. Evans, J.S. Werner, C.K. Hitzenberger, Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography. Opt. Lett. 33(1), 22–24 (2008)

    Article  ADS  Google Scholar 

  61. B. Cense, W. Gao, J.M. Brown, S.M. Jones, R.S. Jonnal, M. Mujat, B.H. Park, J.F. de Boer, D.T. Miller, Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics. Opt. Express. 17(24), 21634–21651 (2009)

    Article  Google Scholar 

  62. B. Cense, E. Koperda, J.M. Brown, O.P. Kocaoglu, W. Gao, R.S. Jonnal, D.T. Miller, Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources. Opt. Express. 17(5), 4095–4111 (2009)

    Article  ADS  Google Scholar 

  63. K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, Y. Yasuno, Simultaneous high-resolution retinal imaging and high penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography. Opt. Express. 18(8), 8515–8527 (2010)

    Article  ADS  Google Scholar 

  64. M. Mujat, R.D. Ferguson, A.H. Patel, N. Iftimia, N. Lue, D.X. Hammer, High resolution multimodal clinical ophthalmic imaging system. Opt. Express. 18(11), 11607–11621 (2010)

    Article  ADS  Google Scholar 

  65. E.J. Fernández, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, W. Drexler, Chromatic aberration correction of the human eye for retinal imaging in the near infrared. Opt. Express. 14(13), 6213–6225 (2006)

    Article  ADS  Google Scholar 

  66. E.J. Fernandez, L. Vabre, B. Hermann, A. UnterhubervB. Povazay, W. Drexler, Adaptive optics with a magnetic deformable mirror: applications in the human eye. Opt. Express. 14(20), 8900–8917 (2006)

    Article  ADS  Google Scholar 

  67. A. Ames, C.A. Proctor, Dioptrics of the eye. J. Opt. Soc. Am. 5, 22–84(1921)

    Article  ADS  Google Scholar 

  68. A.C. van Heel, Correcting the spherical and chromatic aberrations of the eye. J Opt Soc Am. 36, 237–239 (1946 Apr)

    ADS  Google Scholar 

  69. I. Powell, Lenses for correcting chromatic aberration of the eye. Appl. Opt. 20(24), 4152–4155 (1981)

    Article  ADS  Google Scholar 

  70. A.L. Lewis, M. Katz, C. Oehrlein, A modified achromatizing lens. Am. J. Optom. Physiol. Opt. 59(11), 909–911 (1982)

    Google Scholar 

  71. Y. Benny, S. Manzanera, P.M. Prieto, E.N. Ribak, P. Artal, Wide-angle chromatic aberration corrector for the human eye. J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 24(6), 1538–1544 (2007)

    Article  ADS  Google Scholar 

  72. E.J. Fernández, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P.K. Ahnelt, W. Drexler, Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina. Opt. Express. 16(15), 11083–11094 (2008)

    Article  ADS  Google Scholar 

  73. R.J. Zawadzki, B. Cense, Y. Zhang, S.S. Choi, D.T. Miller, J.S. Werner, Ultrahigh-resolution optical coherencetomography with monochromatic and chromaticaberration correction. Opt. Express. 16(11), 8126–8143 (2008)

    Article  ADS  Google Scholar 

  74. R.J. Zawadzki, S.S. Choi, A.R. Fuller, J.W. Evans, B. Hamann, J.S. Werner, Cellular resolution volumetric in vivo retinal imaging with adaptive optics–optical coherence tomography. Opt. Express. 17(5), 4084–4094 (2009)

    Article  ADS  Google Scholar 

  75. B. Povazay, B. Hofer, C. Torti, B. Hermann, A.R. Tumlinson, M. Esmaeelpour, C.A. Egan, A.C. Bird, W. Drexler, Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography. Opt. Express. 17(5), 4134–4150 (2009)

    Article  ADS  Google Scholar 

  76. C. Torti, B. Povazay, B. Hofer, A. Unterhuber, J. Carroll, P.K. Ahnelt, W. Drexler, Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina. Opt. Express. 17(22), 19382–19400 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Some of the figures of the current chapter, particularly those pertaining retina images, show results obtained in close collaboration with W. Drexler and his group, who are acknowledged. This work has been financially supported by “Ministerio de Educación y Ciencia,” Spain (grant FIS2007-64765), and “Fundación Séneca,” Murcia, Spain (grant 04524/GERM/06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Josua Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fernández, E.J., Artal, P. (2012). Adaptive Optics in Ocular Optical Coherence Tomography. In: Bernardes, R., Cunha-Vaz, J. (eds) Optical Coherence Tomography. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27410-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27410-7_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27409-1

  • Online ISBN: 978-3-642-27410-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics