Skip to main content

Role of MicroRNA miR319 in Plant Development

  • Chapter
  • First Online:
MicroRNAs in Plant Development and Stress Responses

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 15))

Abstract

Originally identified in a genetic screen, microRNA miR319 regulates transcription factors of the TCP family. The balance between miR319 and its targets controls leaf morphogenesis and several other plant developmental processes. High levels of miR319 or low TCP activity causes an excess of cell proliferation that generates a crinkled simple leaf in Arabidopsis and snapdragon or supercompound organ in tomato. In contrast, reduced miR319 levels or high TCP activity reduces leaf and petal size, results in a simple tomato leaf, and is lethal in extreme cases. Insights into the gene networks that are controlled by the miR319-regulated TCPs demonstrate their participation in multiple biological pathways, from hormone biosynthesis and signaling to cell proliferation and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131(14):3357–3365

    Article  PubMed  CAS  Google Scholar 

  • Addo-Quaye C, Snyder JA, Park YB, Li YF, Sunkar R, Axtell MJ (2009) Sliced microRNA targets and precise loop-first processing of MIR319 hairpins revealed by analysis of the Physcomitrella patens degradome. RNA 15(12):2112–2121, rna.1774909 [pii] 10.1261/rna.1774909

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal P, Das Gupta M, Joseph AP, Chatterjee N, Srinivasan N, Nath U (2010) Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis. Plant Cell 22(4):1174–1189, tpc.109.066647 [pii] 10.1105/tpc.109.066647

    Article  PubMed  CAS  Google Scholar 

  • Aguilar-Martinez JA, Poza-Carrion C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19(2):458–472, tpc.106.048934 [pii] 10.1105/tpc.106.048934

    Article  PubMed  CAS  Google Scholar 

  • Allen RS, Li J, Stahle MI, Dubroue A, Gubler F, Millar AA (2007) Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA 104(41):16371–16376, 0707653104 [pii] 10.1073/pnas.0707653104

    Article  PubMed  CAS  Google Scholar 

  • Allen RS, Li J, Alonso-Peral MM, White RG, Gubler F, Millar AA (2010) MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects. Silence 1(1):18, 1758-907X-1-18 [pii] 10.1186/1758-907X-1-18

    Article  PubMed  Google Scholar 

  • Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe DC (2005) Cloning and characterization of micro-RNAs from moss. Plant J 43(6):837–848, TPJ2499 [pii] 10.1111/j.1365-313X.2005.02499.x

    Article  PubMed  CAS  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15(11):2730–2741

    Article  PubMed  CAS  Google Scholar 

  • Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17(6):1658–1673

    Article  PubMed  CAS  Google Scholar 

  • Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19(6):1750–1769

    Article  PubMed  CAS  Google Scholar 

  • Baker CC, Sieber P, Wellmer F, Meyerowitz EM (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 15(4):303–315

    Article  PubMed  CAS  Google Scholar 

  • Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez JP, Zinder M, Samach A, Eshed Y, Ori N (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136(5):823–832, dev.031625 [pii] 10.1242/dev.031625

    Article  PubMed  CAS  Google Scholar 

  • Blein T, Pulido A, Vialette-Guiraud A, Nikovics K, Morin H, Hay A, Johansen IE, Tsiantis M, Laufs P (2008) A conserved molecular framework for compound leaf development. Science 322(5909):1835–1839, 322/5909/1835 [pii] 10.1126/science.1166168

    Article  PubMed  CAS  Google Scholar 

  • Bologna NG, Mateos JL, Bresso EG, Palatnik JF (2009) A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J 28(23):3646–3656, emboj2009292 [pii] 10.1038/emboj.2009.292

    Article  PubMed  CAS  Google Scholar 

  • Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113(1):25–36, S0092867403002319 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence–a genomics approach. Plant Biotechnol J 1(1):3–22, PBI004 [pii] 10.1046/j.1467-7652.2003.00004.x

    Article  PubMed  CAS  Google Scholar 

  • Cubas P, Lauter N, Doebley J, Coen E (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18(2):215–222

    Article  PubMed  CAS  Google Scholar 

  • Crawford BC, Nath U, Carpenter R, Coen ES (2004) CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiol 135 (1):244–253. doi:10.1104/pp.103.036368

    Google Scholar 

  • Donnelly PM, Bonetta D, Tsukaya H, Dengler RE, Dengler NG (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215(2):407–419

    Article  PubMed  CAS  Google Scholar 

  • Efroni I, Blum E, Goldshmidt A, Eshed Y (2008) A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell 20(9):2293–2306, tpc.107.057521 [pii] 10.1105/tpc.107.057521

    Article  PubMed  CAS  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2(2):e219

    Article  PubMed  Google Scholar 

  • Giraud E, Ng S, Carrie C, Duncan O, Low J, Lee CP, Aken OV, Millar AH, Murcha M, Whelan J (2010) TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana. Plant Cell 22:3921–3934, 10.1105/tpc.110.074518

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez DH, Welchen E, Attallah CV, Comelli RN, Mufarrege EF (2007) Transcriptional coordination of the biogenesis of the oxidative phosphorylation machinery in plants. Plant J 51(1):105–116, TPJ3121 [pii] 10.1111/j.1365-313X.2007.03121.x

    Article  PubMed  CAS  Google Scholar 

  • Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell 7(11):1879–1891

    PubMed  CAS  Google Scholar 

  • Hasson A, Plessis A, Blein T, Adroher B, Grigg S, Tsiantis M, Boudaoud A, Damerval C, Laufs P (2011) Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development. Plant Cell 23(1):54–68, tpc.110.081448 [pii] 10.1105/tpc.110.081448

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799

    Article  PubMed  CAS  Google Scholar 

  • Kaneko M, Inukai Y, Ueguchi-Tanaka M, Itoh H, Izawa T, Kobayashi Y, Hattori T, Miyao A, Hirochika H, Ashikari M, Matsuoka M (2004) Loss-of-function mutations of the rice GAMYB gene impair alpha-amylase expression in aleurone and flower development. Plant Cell 16(1):33–44, 10.1105/tpc.017327 tpc.017327 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Choi D, Kende H (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J 36(1):94–104

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Narry Kim V, Chua NH, Park CM (2005) microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42(1):84–94, TPJ2354 [pii] 10.1111/j.1365-313X.2005.02354.x

    Article  PubMed  CAS  Google Scholar 

  • Kosugi S, Ohashi Y (2002) DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J 30(3):337–348

    Article  PubMed  CAS  Google Scholar 

  • Koyama T, Furutani M, Tasaka M, Ohme-Takagi M (2007) TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 19(2):473–484

    Article  PubMed  CAS  Google Scholar 

  • Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2010) TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 22(11):3574–3588, tpc.110.075598 [pii] 10.1105/tpc.110.075598

    Article  PubMed  CAS  Google Scholar 

  • Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131(17):4311–4322

    Article  PubMed  CAS  Google Scholar 

  • Li C, Potuschak T, Colon-Carmona A, Gutierrez RA, Doerner P (2005a) Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proc Natl Acad Sci USA 102(36):12978–12983

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Li W, Jin YX (2005b) Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa. Acta Biochim Biophys Sin (Shanghai) 37(2):75–87

    Article  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773, nature03315 [pii] 10.1038/nature03315

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Song Y, Chen Z, Yu D (2009) Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant 136(2):223–236, PPL1229 [pii] 10.1111/j.1399-3054.2009.01229.x

    Article  PubMed  CAS  Google Scholar 

  • Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14(7):1605–1619

    Article  PubMed  CAS  Google Scholar 

  • López-Juez E, Dillon E, Magyar Z, Khan S, Hazeldine S, de Jager SM, Murray JA, Beemster GT, Bogre L, Shanahan H (2008) Distinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis. Plant Cell 20 (4):947–968. doi:tpc.107.057075 [pii] 10.1105/tpc.107.057075

    Google Scholar 

  • Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ (2005) Elucidation of the small RNA component of the transcriptome. Science 309(5740):1567–1569, 309/5740/1567 [pii] 10.1126/science.1114112

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Kulkarni K, Souret FF, MuthuValliappan R, Tej SS, Poethig RS, Henderson IR, Jacobsen SE, Wang W, Green PJ, Meyers BC (2006) MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 16(10):1276–1288, gr.5530106 [pii]10.1101/gr.5530106

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14(12):1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Martin-Trillo M, Cubas P (2010) TCP genes: a family snapshot ten years later. Trends Plant Sci 15(1):31–39, S1360-1385(09)00287-8 [pii] 10.1016/j.tplants.2009.11.003

    Article  PubMed  CAS  Google Scholar 

  • Masuda HP, Cabral LM, De Veylder L, Tanurdzic M, de Almeida EJ, Geelen D, Inze D, Martienssen RA, Ferreira PC, Hemerly AS (2008) ABAP1 is a novel plant Armadillo BTB protein involved in DNA replication and transcription. EMBO J 27(20):2746–2756, emboj2008191 [pii] 10.1038/emboj.2008.191

    Article  PubMed  CAS  Google Scholar 

  • Mateos JL, Bologna NG, Chorostecki U, Palatnik JF (2010) Identification of microRNA processing determinants by random mutagenesis of Arabidopsis MIR172a precursor. Curr Biol 20(1):49–54, S0960-9822(09)01980-0 [pii] 10.1016/j.cub.2009.10.072

    Article  PubMed  CAS  Google Scholar 

  • Mathan DS, Jenkins JA (1960) Chemically induced phenocopy of a tomato mutant. Science 131(3392):36–37, 131/3392/36 [pii] 10.1126/science.131.3392.36

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190, tpc.108.064311 [pii] 10.1105/tpc.108.064311

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19(3):819–830, tpc.106.042705 [pii] 10.1105/tpc.106.042705

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55(6):853–867, DO00002142 [pii] 10.1007/s11103-004-2142-6

    PubMed  CAS  Google Scholar 

  • Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17(3):705–721, tpc.104.027920 [pii] 10.1105/tpc.104.027920

    Article  PubMed  CAS  Google Scholar 

  • Nag A, King S, Jack T (2009) miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci USA 106(52):22534–22539, 0908718106 [pii] 10.1073/pnas.0908718106

    Article  PubMed  CAS  Google Scholar 

  • Nath U, Crawford BC, Carpenter R, Coen E (2003) Genetic control of surface curvature. Science 299(5611):1404–1407, 10.1126/science.1079354 299/5611/1404 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P (2006) The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18(11):2929–2945

    Article  PubMed  CAS  Google Scholar 

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10(6):239–247

    Article  PubMed  CAS  Google Scholar 

  • Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez JP, Blum E, Zamir D, Eshed Y (2007) Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39(6):787–791, ng2036 [pii] 10.1038/ng2036

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132(3):603–614, dev.01595 [pii] 10.1242/dev.01595

    Article  PubMed  CAS  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425(6955):257–263

    Article  PubMed  CAS  Google Scholar 

  • Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D, Carrington JC, Weigel D (2007) Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell 13(1):115–125, S1534-5807(07)00159-1 [pii] 10.1016/j.devcel.2007.04.012

    Article  PubMed  CAS  Google Scholar 

  • Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12(17):1484–1495

    Article  PubMed  CAS  Google Scholar 

  • Pruneda-Paz JL, Breton G, Para A, Kay SA (2009) A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323(5920):1481–1485, 323/5920/1481 [pii] 10.1126/science.1167206

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20(24):3407–3425

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16(13):1616–1626

    Article  PubMed  CAS  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110(4):513–520

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137(1):103–112, 137/1/103 [pii] 10.1242/dev.043067

    Article  PubMed  CAS  Google Scholar 

  • Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16(5):258–264, S1360-1385(11)00049-5 [pii] 10.1016/j.tplants.2011.03.001

    Article  PubMed  CAS  Google Scholar 

  • Sarvepalli K, Nath U (2011) Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. Plant J, 10.1111/j.1365-313X.2011.04616.x

  • Schommer C, Palatnik JF, Aggarwal P, Chetelat A, Cubas P, Farmer EE, Nath U, Weigel D (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6(9):e230, 07-PLBI-RA-0598 [pii] 10.1371/journal.pbio.0060230

    Article  PubMed  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8(4):517–527

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18(5):1121–1133, tpc.105.039834 [pii] 10.1105/tpc.105.039834

    Article  PubMed  CAS  Google Scholar 

  • Shleizer-Burko S, Burko Y, Ben-Herzel O, Ori N (2011) Dynamic growth program regulated by LANCEOLATE enables flexible leaf patterning. Development 138(4):695–704, dev.056770 [pii] 10.1242/dev.056770

    Article  PubMed  CAS  Google Scholar 

  • Song L, Axtell MJ, Fedoroff NV (2010) RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr Biol 20(1):37–41, S0960-9822(09)01993-9 [pii] 10.1016/j.cub.2009.10.076

    Article  PubMed  CAS  Google Scholar 

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85(2):159–170, S0092-8674(00)81093-4 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Takabe K, Tsukada Y, Shimizu T, Takagiwa J, Hirayama M, Nakayama M, Miura H, Akabane H, Takayama S, Aida S (1997) [The clinical utility of asbestos body counts in bronchoalveolar lavage fluid]. Nihon Kyobu Shikkan Gakkai Zasshi 35(11):1196–1204

    PubMed  CAS  Google Scholar 

  • Takada S, Hibara K, Ishida T, Tasaka M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128(7):1127–1135

    PubMed  CAS  Google Scholar 

  • Takeda T, Amano K, Ohto MA, Nakamura K, Sato S, Kato T, Tabata S, Ueguchi C (2006) RNA interference of the Arabidopsis putative transcription factor TCP16 gene results in abortion of early pollen development. Plant Mol Biol 61(1–2):165–177, 10.1007/s11103-006-6265-9

    Article  PubMed  CAS  Google Scholar 

  • Tsukaya H (2006) Mechanism of leaf-shape determination. Annu Rev Plant Biol 57:477–496

    Article  PubMed  CAS  Google Scholar 

  • van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge UI, Kunze R (2006) Transcription analysis of arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141(2):776–792, pp. 106.079293 [pii] 10.1104/pp.106.079293

    Article  PubMed  Google Scholar 

  • Vroemen CW, Mordhorst AP, Albrecht C, Kwaaitaal MA, de Vries SC (2003) The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15(7):1563–1577

    Article  PubMed  CAS  Google Scholar 

  • Warthmann N, Chen H, Ossowski S, Weigel D, Herve P (2008a) Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE 3(3):e1829, 10.1371/journal.pone.0001829

    Article  PubMed  Google Scholar 

  • Warthmann N, Das S, Lanz C, Weigel D (2008b) Comparative analysis of the MIR319a microRNA locus in Arabidopsis and related Brassicaceae. Mol Biol Evol 25(5):892–902, msn029 [pii] 10.1093/molbev/msn029

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122(4):1003–1013

    Article  PubMed  CAS  Google Scholar 

  • Weir I, Lu J, Cook H, Causier B, Schwarz-Sommer Z, Davies B (2004) CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development 131(4):915–922

    Article  PubMed  CAS  Google Scholar 

  • Werner S, Wollmann H, Schneeberger K, Weigel D (2010) Structure determinants for accurate processing of miR172a in Arabidopsis thaliana. Curr Biol 20(1):42–48, S0960-9822(09)01981-2 [pii] 10.1016/j.cub.2009.10.073

    Article  PubMed  CAS  Google Scholar 

  • Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132(16):3657–3668, dev.01942 [pii] 10.1242/dev.01942

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Yogev Burko and Naomi Ori for providing the pictures of Lanceolate and miR319 overexpressors in tomato. Our work is supported by grants from the Agencia Nacional de Promoción Cientifica y Tecnológia (to C.S. and J.P.) and the Howard Hughes Medical Institute (J.P.). C.S., S.P., and E.B. are fellows of the Argentinean Research Council (CONICET), and J.P. is member of the same institution.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carla Schommer or Javier F. Palatnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schommer, C., Bresso, E.G., Spinelli, S.V., Palatnik, J.F. (2012). Role of MicroRNA miR319 in Plant Development. In: Sunkar, R. (eds) MicroRNAs in Plant Development and Stress Responses. Signaling and Communication in Plants, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27384-1_2

Download citation

Publish with us

Policies and ethics