Skip to main content

Quantitative Analysis (Data Evaluation)

  • Chapter
  • First Online:
Auger- and X-Ray Photoelectron Spectroscopy in Materials Science

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 49))

Abstract

AES and XPS are quantitative analytical tools. The basis of their quantification is the determination of the intensity of a characteristic signal from a measured spectrum. Mainly depending on the tolerable uncertainty in the respective analytical task, the signal intensity is obtained by application of more or less elaborate procedures to the raw data, as outlined in the next paragraph (Sect.4.1). Section 4.2 presents the basic tools for quantification such as relative sensitivity factors and electron attenuation length in electron spectroscopies. As shown in Sect. 4.3 for XPS and in Sect. 4.4 for AES, quantification of intensities in terms of atomic concentrations is only possible by knowledge of the in-depth distribution of composition, with the limiting cases of homogeneous distribution and of thin atomic layer(s) on a substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Frequently, the notation \({{I}^{\infty }}_{\mathrm{A}}\) is used (to indicate infinite sample thickness) [4.14.2] instead of \({{I}^{0}}_{A}\) used here (with the superscript 0 denoting any standard reference quantity in chemistry as recommended by IUPAC [4.19]).

  2. 2.

    Unfortunately, notations of incidence and emission angles (α, θ) are opposite in the work of Jablonski and Powell [4.29] and of Seah [4.14.2], which we have adopted here.

  3. 3.

    In earlier publications (e.g., Ref. [4.674.1514.154]), the experimentally relevant \({\lambda }_{\mathrm{MED}}\,=\,\lambda \) was frequently used as short form of λ0cosθ with the attenuation length λ0.

  4. 4.

    Note that it has become customary to express the product \({\sigma }_{A,\ i}\ W({\beta }_{A,i},\psi )\) by the differential cross section \(\mathrm{d}{\sigma }_{A,i}/\mathrm{d}\Omega \,=\,(1/4\pi ){\sigma }_{A,i}\ W({\beta }_{A,i},\psi )\) [4.29]. Furthermore, in solids β A, i has to be replaced by the modified parameter β A, ieff (see Sect. 4.3.1.2).

  5. 5.

    The exponent 0.75 applies only for E > 200 eV, and for elements and inorganic compounds. For organic compounds, the exponent is 0.79 [4.39].

  6. 6.

    In principle, the dependence of the elastic scattering correction factor Q on the emission angle has to be considered in the attenuation length \(\lambda \,=\,{\lambda }_{\mathit{in}}Q(\theta ,\omega )\) (4.20). Because after (4.24) the dependence of Q on θ is proportional to Q(0, ω), the angular dependence cancels in (4.84a)–(4.84c). The slight effect of the angular dependence of ω is again similar for both elements [4.68] and practically cancels in the ratio. With the matrix correction factor \({F}_{A,B}^{m}(\psi )\) inserted in (4.57), (4.58a), and (4.58b), quantification to obtain \({X}_{A},\ {X}_{B}\) can be accomplished for \(\psi \neq 54.{7}^{\circ }\) with (4.50), (4.52), and (4.54).

  7. 7.

    Note that (4.84b) is in accordance with (5.36), p. 226 of Ref. [4.2], and with (46), p. 362 and (61), p. 364 of Ref. [4.1], but at variance with (58), p. 363 of Ref. [4.1].

  8. 8.

    Note that the inelastic mean free path is exactly the same for Auger- and photoelectrons of the same kinetic energy. However, attenuation lengths between AES and XPS may differ slightly because of the different effects of elastic scattering for symmetric and asymmetric emission (see Sects. 4.2.2 and 4.3.1).

References

  1. M.P. Seah, Quantification in AES and XPS, in Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Chap. 13, ed. by D. Briggs, J.T. Grant (IM Publication, Chichester, 2003), pp. 345–375

    Google Scholar 

  2. M.P. Seah, Quantification of AES and XPS, in Practical Surface Analysis, Chap. 5, 2nd edn., ed. by D. Briggs, M.P. Seah, vol. 1: AES and XPS (Wiley, Chichester, 1990), pp. 206–251

  3. M.V. Zakhvatova, F.Z. Gil’mutdinov, D.V. Surnin, Phys. Met. Metallogr. 104, 157 (2007)

    Google Scholar 

  4. D.A. Shirley, Phys. Rev. B 5, 4707 (1972)

    ADS  Google Scholar 

  5. J. Vegh, J. Electron Spectrosc. Relat. Phenom. 151, 93 (2001)

    Google Scholar 

  6. H.E. Bishop, Surf. Interface Anal. 3, 272 (1981)

    Google Scholar 

  7. S. Tougaard, Surf. Sci. 216, 343 (1981)

    ADS  Google Scholar 

  8. S. Tougaard, J. Vac. Sci. Technol. A 14, 1415 (1996)

    ADS  Google Scholar 

  9. M.P. Seah, Surf. Sci. 420, 285 (1999)

    ADS  Google Scholar 

  10. M.P. Seah, I.S. Gilmore, S.J. Spencer, J. Electron Spectrosc. Relat. Phenom. 120, 93 (2001)

    Google Scholar 

  11. C.J. Powell, J.M. Conny, Surf. Interface Anal. 41, 804 (2009)

    Google Scholar 

  12. M.P. Seah, I.S. Gilmore, H.E. Bishop, G. Lorang, Surf. Interface Anal. 26, 701 (1998)

    Google Scholar 

  13. S. Hofmann, J. Vac. Sci. Technol. A 4, 2789 (1986)

    ADS  Google Scholar 

  14. R. Kosiba, J. Liday, G. Ecke, O Ambacher, J. Breza, P. Vogrincic, Vacuum 80, 990 (2006)

    Google Scholar 

  15. M.P. Seah, M.T. Anthony, J. Electron Spectrosc. Relat. Phenom. 32, 73 (1983)

    Google Scholar 

  16. I.S. Gilmore, M.P. Seah, Appl. Surf. Sci. 93, 273 (1996)

    ADS  Google Scholar 

  17. W. Pamler, Surf. Interface Anal. 13, 55 (1988)

    Google Scholar 

  18. W.F. Stickle, The Use of Chemometrics in AES and XPS Data Treatment, in Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Chap. 14, ed. by D. Briggs, J.T. Grant (IM Publications, Chichester, 2003), pp. 377–396

    Google Scholar 

  19. J.D. Cox, Pure Appl. Chem. 54, 1239 (1982)

    Google Scholar 

  20. W. Palmberg, Anal. Chem. 45, 549A (1973)

    Google Scholar 

  21. L.E. Davis, N.C. MacDonald, P.W. Palmberg, G.E. Riach, R.E. Weber, Handbook of Auger Electron Spectroscopy, 2nd edn. (Perkin-Elmer Corp., Eden Prairie, 1978); K.D. Childs, B.A. Carlson, L.a. LaVanier, J.F. Moulder, D.F. Paul, W.F. Stickle, D.G. Watson, Handbook of Auger Electron Spectroscopy, 3rd edn. (Physical Electronics Inc., Eden Prairie, 1995)

    Google Scholar 

  22. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, 1979)

    Google Scholar 

  23. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, 1992)

    Google Scholar 

  24. N. Ikeo, Y. Iijima, N. Niimura, M. Sigematsu, T. Tazawa, S. Matsumoto, K. Kojima, Y. Nagasawa, Handbook of X-Ray Photoelectron Spectroscopy (JEOL, Tokyo 1991)

    Google Scholar 

  25. M.P. Seah, Surf. Interface Anal. 9, 85 (1986)

    Google Scholar 

  26. Geller Microanalytical Laboratory, Topsfield. www.gellermicro.com

  27. M.P. Seah, I.S. Gilmore, Phys. Rev. B 73, 174113 (2006)

    ADS  Google Scholar 

  28. C.S. Fadley, J. Electron Spectrosc. Relat. Phenom. 5, 725 (1974)

    Google Scholar 

  29. A. Jablonski, C.J. Powell, Surf. Sci. 574, 219 (2005)

    ADS  Google Scholar 

  30. Z.J. Ding, W.S. Tan, Y.G. Li, J. Appl. Phys. 99, 084903 (2006)

    ADS  Google Scholar 

  31. Y.F. Chen, Surf. Sci. 435, 213 (1996)

    ADS  Google Scholar 

  32. C.J. Powell, Surf. Sci. 299/300, 34 (1994)

    Google Scholar 

  33. A. Jablonski, C.J. Powel, Surf. Sci. Rep. 47, 33 (2002)

    Google Scholar 

  34. A. Jablonski, C.J. Powell, J. Vac. Sci. Technol. A 27, 253 (2009)

    Google Scholar 

  35. C.J. Powell, A. Jablonski, J. Electron Spectrosc. Relat. Phenom. 178179, 331 (2010)

    Google Scholar 

  36. M.P. Seah, W.A. Dench, Surf. Interface Anal. 1, 2 (1979)

    Google Scholar 

  37. C.J. Powell, A. Jablonski, NIST Electron Effective-Attenuation-Length Database, ver. 1.2, SRD 82 (National Institute of Standards and Technology, Gaithersburg, 2009). http://www.nist.gov/srd/nist82.cfm

  38. S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interface Anal. 21, 165 (1994)

    Google Scholar 

  39. A. Jablonski, Surf. Sci. 188, 164 (1987)

    ADS  Google Scholar 

  40. M.P. Seah, I.S. Gilmore, Surf. Interface Anal. 26, 815 (1998)

    Google Scholar 

  41. S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interface Anal. 17, 911 (1991)

    Google Scholar 

  42. S. Tanuma, C.J. Powell, D.R. Penn: Surf. Interface Anal. 17, 927 (1991)

    Google Scholar 

  43. P.J. Cumpson, M.P. Seah, Surf. Interface Anal. 25, 430 (1997)

    Google Scholar 

  44. S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interface Anal. 43, 689 (2011)

    Google Scholar 

  45. Y.F. Chen, Surf. Sci. 519, 115 (2002)

    ADS  Google Scholar 

  46. Y.F. Chen, C.M. Kwei, Surf. Sci. 364, 131 (1996)

    ADS  Google Scholar 

  47. S. Tanuma, S. Ichimura, K. Goto, Surf. Interface Anal. 30, 212 (2000)

    Google Scholar 

  48. F. Yubero, S. Tougaard, Surf. Interface Anal. 19, 269 (1992)

    Google Scholar 

  49. W.S.M. Werner, C. Eisenmenger-Sittner, J. Zemek, P. Jiricek, Phys. Rev. B 67, 155412 (2003)

    ADS  Google Scholar 

  50. K. Salma, Z.J. Ding, H.M. Li, Z.M. Zhang, Surf. Sci. 600, 1526 (2006)

    ADS  Google Scholar 

  51. N. Pauly, S. Tougaard, Surf. Sci. 603, 2158 (2009)

    ADS  Google Scholar 

  52. W.S.M. Werner, W. Smekal, C. Tomasik, H. Stoeri, Surf. Sci. 486, L461 (2001)

    Google Scholar 

  53. A. Jablonski, J. Zemek, Surf. Sci. 601, 3409 (2007)

    ADS  Google Scholar 

  54. S. Tanuma, T. Shiratori, T. Kimura, K. Goto, S. Ichimura, C.J. Powell, Surf. Interface Anal. 37 833 (2005)

    Google Scholar 

  55. G. Gergely, S. Gurban, M. Menyhard, A. Jablonski, L. Zommer, K. Goto, Vacuum 84, 134 (2010)

    Google Scholar 

  56. W.S.M. Werner, L. Köver, S. Egri, J. Toth, D. Varga, Surf. Sci. 585, 85 (2005)

    ADS  Google Scholar 

  57. T. Nagatomi, K. Goto, Appl. Surf. Sci. 256, 1200 (2009)

    ADS  Google Scholar 

  58. T. Nagatomi, S. Tanuma, Anal. Sci. 26, 165 (2010)

    Google Scholar 

  59. A. Jablonski, Surf. Sci. 364, 380 (1987)

    ADS  Google Scholar 

  60. ISO 18115, Surface Chemical Analysis Vocabulary (ISO, Geneva, 2001)

    Google Scholar 

  61. [4.34] A. Jablonski, C.J. Powell, J. Vac. Sci. Technol. A 27, 253 (2009).

    Google Scholar 

  62. A. Jablonski, C.J. Powell, J. Electron Spectrosc. Relat Phenom. 100, 137 (1999)

    Google Scholar 

  63. A. Jablonski, C.J. Powell, Phys. Rev. B 50, 4739 (1994)

    ADS  Google Scholar 

  64. M.P. Seah, I.S. Gilmore, Surf. Interface Anal. 31, 835 (2001)

    Google Scholar 

  65. M.P. Seah, Surf. Interface Anal. 20, 243 (1993)

    Google Scholar 

  66. R.F. Reilmann, A. Msezane, S.T. Manson, J. Electron Spectrosc. 8, 389 (1976)

    Google Scholar 

  67. S. Hofmann, J.M. Sanz, Surf. Interface Anal. 6, 75 (1984)

    Google Scholar 

  68. P. Marcus, C. Hinnen, I. Olefjord, Surf. Interface Anal. 20, 923 (1993)

    Google Scholar 

  69. M.S. Vinodh, L.P.H. Jeurgens, Surf. Interface Anal. 36, 1629 (2004).

    Google Scholar 

  70. M.P. Seah, Surf. Interface Anal. 33, 640 (2002)

    Google Scholar 

  71. C.J. Powell, A. Jablonski, Surf. Interface Anal. 33, 211 (2002)

    Google Scholar 

  72. C.S. Fadley, J. Electron Spectrosc. Relat. Phenom. 178179, 2 (2010)

    Google Scholar 

  73. J.H. Scofield, J. Electron Spectrosc. Relat. Phenom. 8, 129 (1976)

    Google Scholar 

  74. C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.H. Raymond, L.H. Gale, Surf. Interface Anal. 3, 211 (1981)

    Google Scholar 

  75. J. Yeh, I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985)

    ADS  Google Scholar 

  76. F. Nevedov, J. Electron Spectrosc. Relat. Phenom. 100, 1 (1999)

    Google Scholar 

  77. A. Jablonski, Surf. Interface Anal. 23, 29 (1995)

    Google Scholar 

  78. M.P. Seah, S.J. Spencer, F. Boderio, J.J. Pireaux, J. Electron Spectrosc. Relat. Phenom. 87, 159 (1997)

    Google Scholar 

  79. D.W.O. Heddle, J. Phys. E Sci. Instrum. 4, 589 (1971)

    ADS  Google Scholar 

  80. Y. Takeichi, K. Goto, Surf. Interface Anal. 25, 17 (1997)

    Google Scholar 

  81. M.P. Seah, C.G. Smith, Surf. Interface Anal. 17, 855 (1991)

    Google Scholar 

  82. NPL Systems for the Intensity Calibration of Auger- and Photoelectron Spectrometers, A1 and X1 (NPL, Teddington). http://www.npl.co.uk/npl/cmmt/index.html

  83. ISO 1818:2004, Surface Chemical Analysis – Auger Spectroscopy and X-Ray Photoelectron Spectroscopy – Guide to the Use of Experimentally Determined Relative Sensitivity Factors for the Quantitative Analysis of Homogeneous Materials (Int. Org. for Standardization, Geneva, 2004)

    Google Scholar 

  84. D.R. Lide (ed.), Handbook of Chemistry and Physics, 85th edn. (2004)

    Google Scholar 

  85. P.M. Hall, J.M. Morabito, Surf. Sci. 83, 391 (1979)

    ADS  Google Scholar 

  86. P.H. Holloway, Surf. Sci. 66, 479 (1977)

    ADS  Google Scholar 

  87. R. Payling, J. Electron Spectrosc. Relat. Phenom. 36, 99 (1985)

    Google Scholar 

  88. M.P. Seah, I.S. Gilmore, Surf. Interface Anal. 26, 723 (1998)

    Google Scholar 

  89. M.P. Seah, I.S. Gilmore, Surf. Interface Anal. 26, 908 (1998)

    Google Scholar 

  90. D.R. Penn, J. Electron Spectrosc. Relat. Phenom. 9, 29 (1976)

    Google Scholar 

  91. A.I. Zagorenko, V.I. Zaporozhenko, Surf. Interface Anal. 14, 438 (1989)

    Google Scholar 

  92. M.P. Seah, I.S. Gilmore, J. Spencer, Surf. Interface Anal. 31, 778 (2001)

    Google Scholar 

  93. C.J. Powell, A. Jablonski, Nucl. Instrum. Methods Phys. Res. A 601, 54 (2009)

    ADS  Google Scholar 

  94. W.S.M. Werner, W. Smekal, C.J. Powell, NIST Database for the Simulation of Electron Spectra for Surface Analysis (SESSA), SRD 100, Ver. 1.3 (National Institute of Standards and Technology, Gaithersburg, 2011). http://www.nist.gov/srd/nist100.cfm

  95. G. Tasneem, W.S.M. Werner, W. Smekal, C.J. Powell, Surf. Interface Anal. 42, 1072 (2010)

    Google Scholar 

  96. T.E. Gallon, Surf. Sci. 17, 486 (1969)

    ADS  Google Scholar 

  97. R. Holm, S. Storp, Fres. Z. Anal. Chem. 290, 273 (1978)

    Google Scholar 

  98. M.P. Seah, Surf. Sci. 32, 703 (1972)

    ADS  Google Scholar 

  99. J. Zemek, P. Jiříček, J. Houdková, K. Olejnik, A. Jablonski, Surf. Interface Anal. 39, 916 (2007)

    Google Scholar 

  100. S. Hofmann, J.M. Sanz, Microchim. Acta Suppl. 10, 135 (1983)

    Google Scholar 

  101. M.P. Seah, J. Vac. Sci. Technol. A 22, 1564 (2004)

    ADS  Google Scholar 

  102. S. Hofmann, J.M. Sanz, J. Trace Anal. Microprobe Technol. 1, 213 (1982–1983)

    Google Scholar 

  103. A.M. Bradshaw, W. Wyrobisch, J. Electron Spectrosc. Relat. Phenom. 7, 45 (1975)

    Google Scholar 

  104. A.M. Bradshaw, W. Domcke, L.S. Cederbaum, Phys. Rev. B 16, 1480 (1977)

    ADS  Google Scholar 

  105. L.P.H. Jeurgens, W.G. Sloof, C.G. Borsboom, F.D. Tichelaar, E.J. Mittemeijer, Appl. Surf. Sci. 161, 139 (2000)

    ADS  Google Scholar 

  106. L.P.H. Jeurgens, W.G. Sloof, C.G. Borsboom, F.D. Tichelaar, E.J. Mittemeijer, Appl. Surf. Sci. 144–145, 11 (1999)

    Google Scholar 

  107. A. Akkerman, T. Boutboul, A. Breskin, R. Chechik, A. Gibrekhterman, Y. Lifshitz, Phys. Stat. Sol. B 198, 769 (1996)

    ADS  Google Scholar 

  108. P. Lejček, S. Hofmann, Crit. Rev. Solid State Mater. Sci. 20, 1 (1995)

    ADS  Google Scholar 

  109. P. Lejček, S. Hofmann, Surf. Interface Anal. 36, 938 (2004)

    Google Scholar 

  110. P. Steiner, H. Hoechst, S. Hüfner, Z. Phys. B 30, 129 (1978)

    ADS  Google Scholar 

  111. P.J. Cumpson, Surf. Interface Anal. 29, 403 (2000)

    Google Scholar 

  112. E.D. Hondros, M.P. Seah, S. Hofmann, P. Lejček, Interfacial and Surface Microchemistry, in Physical Metallurgy, 4th edn., ed. by R.W. Cahn, P. Haasen (North-Holland, Amsterdam, 1996), pp. 1201–1289

    Google Scholar 

  113. P. Lejček, S. Hofmann, Crit. Rev. Solid State Mater. Sci. 33, 133 (2008)

    Google Scholar 

  114. J. Janovec, P. Lejček, J. Pokluda, M. Jenko, Kovové Mater. 44, 81 (2006)

    Google Scholar 

  115. P. Lejček, S. Hofmann, V. Paidar, Scr. Mater. 38, 137 (1998)

    Google Scholar 

  116. S. Hofmann, G. Blank, H. Schultz, Z. Metall. 67, 189 (1976)

    Google Scholar 

  117. J. Erlewein, S. Hofmann, Surf. Sci. 68, 71 (1977)

    ADS  Google Scholar 

  118. S. Hofmann, R. Frech, Anal. Chem. 57, 716 (1985)

    Google Scholar 

  119. S. Hofmann, Microchim. Acta Suppl. 7, 109 (1977)

    Google Scholar 

  120. S. Hofmann, J. Erlewein, Microchim. Acta I, 65 (1979)

    Google Scholar 

  121. S. Hofmann, P. Lejček, Int. J. Mater. Res. 100, 1167 (2009)

    Google Scholar 

  122. M.P. Seah, p. 368 in Ref. [4.2].

    Google Scholar 

  123. C. Argile, C.E. Rhead, Surf. Sci. Rep. 10, 277 (1989)

    ADS  Google Scholar 

  124. Q. Fu, T. Wagner, Appl. Surf. Sci. 240, 189 (2005)

    ADS  Google Scholar 

  125. Q. Fu, T. Wagner, Phys. Rev. Lett. 90, 106105 (2003)

    ADS  Google Scholar 

  126. U. Diebold, J.-M. Pan, T.E. Madey, Phys. Rev. B 47, 3868 (1993)

    ADS  Google Scholar 

  127. U. Otterbein, S. Hofmann, Surf. Interface Anal. 24, 263 (1996)

    Google Scholar 

  128. P. Lejček, S. Hofmann, Surf. Sci. 307–309, 798 (1994)

    Google Scholar 

  129. J.H. Thomas III, S. Hofmann, J. Vac. Sci. Technol. A 3, 1921 (1985)

    ADS  Google Scholar 

  130. S. Hofmann, J.Y. Wang, A. Zalar, Surf. Interface Anal. 39, 787 (2007)

    Google Scholar 

  131. J. Steffen, S. Hofmann, Surf. Interface Anal. 11, 617 (1988)

    Google Scholar 

  132. L.P.H. Jeurgens, M.S. Vinodh, E.J. Mittemeijer, Appl. Surf. Sci. 253, 627 (2006)

    ADS  Google Scholar 

  133. E. Panda, L.P.H. Jeurgens, E. Mittemeijer, J. Appl. Phys. 106, 114913 (2009)

    ADS  Google Scholar 

  134. S. Nemsak, T. Skala, M. Yoshitake, N. Tsud, K.C. Prince, V. Matolin, Surf. Sci. 604, 2073 (2010)

    ADS  Google Scholar 

  135. L.P.H. Jeurgens, A. Lyapin, E.J. Mittemeijer, Surf. Interface Anal. 38, 727 (2006)

    Google Scholar 

  136. J.M. Sanz, S. Hofmann, J. Less Common Met. 92, 317 (1983)

    Google Scholar 

  137. E. Casnati, A. Tartari, C. Baraldi, J. Phys. B 15, 155 (1982)

    ADS  Google Scholar 

  138. H.-W. Drawin, Z. Phys. 164, 513 (1961)

    ADS  Google Scholar 

  139. M. Gryzinski, Phys. Rev. A 138, 336 (1965)

    MathSciNet  ADS  Google Scholar 

  140. S. Ichimura, R. Shimizu, Surf. Sci. 112, 386 (1981)

    ADS  Google Scholar 

  141. R. Shimizu, Jpn. J. Appl. Phys. 22, 1631 (1983)

    ADS  Google Scholar 

  142. S. Ichimura, D.-Z. Jun, R. Shimizu, Surf. Interface Anal. 13, 149 (1988)

    Google Scholar 

  143. S. Tanuma, J. Surf. Anal. 15, 312 (2009)

    Google Scholar 

  144. A. Jablonski, Surf. Sci. 499, 219 (2002)

    ADS  Google Scholar 

  145. A. Jablonski, C.J. Powell, S. Tanuma, Surf. Interface Anal. 37, 861 (2005)

    Google Scholar 

  146. R.G. Zeng, Z.J. Ding, Y.G. Li, S.F. Mao, J. Appl. Phys. 104, 114909 (2008)

    ADS  Google Scholar 

  147. A. Jablonski, C.J. Powell, Surf. Sci. 604, 1928 (2010)

    ADS  Google Scholar 

  148. A. Jablonski, C.J. Powell, J. Surf. Anal. 17, 213 (2011)

    Google Scholar 

  149. A. Jablonski, C.J. Powell, NIST Backscattering-Correction-Factor Database for Auger Electron Spectroscopy, SRD 154, Version 1.0 (National Institute of Standards and Technology, Gaithersburg, 2011). http://www.nist.gov/srd/nist154.cfm

  150. S. Mroczkowski, J. Vac. Sci. Technol. A 7, 1529 (1989)

    ADS  Google Scholar 

  151. S. Hofmann, Mikrochim. Acta Suppl. 8, 71 (1979)

    Google Scholar 

  152. S. Hofmann, J.Y. Wang, Surf. Interface Anal. 39, 324 (2007)

    Google Scholar 

  153. M.L. Tarng, G.K. Wehner, J. Appl. Phys. 44, 1534 (1973)

    ADS  Google Scholar 

  154. S. Hofmann, Auger Electron Spectroscopy, in Wilson and Wilson’s Comprehensive Analytical Chemistry, vol. IX, ed. by G. Svehla (Elsevier, Amsterdam, 1979), pp. 89–172

    Google Scholar 

  155. ISO 18115:2001 – Surface Chemical Analysis – Vocabulary (ISO, Geneva, 2001)

    Google Scholar 

  156. L. Zommer, A. Jablonski, J. Phys. D Appl. Phys. 41, 055501 (2008)

    ADS  Google Scholar 

  157. L. Zommer, A. Jablonski, L. Kotis, M. Menyhard, J. Phys. D Appl. Phys. 41, 155312 (2008)

    ADS  Google Scholar 

  158. L. Zommer, A. Jablonski, L. Kotis, G. Safran, M. Menyhard, Surf. Sci. 604, 633 (2010)

    ADS  Google Scholar 

  159. A. Jablonski, Computer Physics Comm. 183, 1773 (2012)

    ADS  Google Scholar 

  160. A. Jablonski, C.J. Powell, Surf. Sci. 606, 644 (2012)

    ADS  Google Scholar 

  161. M.P. Seah, S.J. Spencer, Surf. Interface Anal. 43, 744 (2012)

    Google Scholar 

  162. N. Pauly, M. Novák, A. Dubus, S. Tougaard, Surf. Interface Anal. 44, 1147 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Hofmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hofmann, S. (2013). Quantitative Analysis (Data Evaluation). In: Auger- and X-Ray Photoelectron Spectroscopy in Materials Science. Springer Series in Surface Sciences, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27381-0_4

Download citation

Publish with us

Policies and ethics