Skip to main content

Evolutionary Adaptation and Disaptation in the Cold: the Icefish Paradigm

  • Chapter
  • First Online:
Book cover Adaptation and Evolution in Marine Environments, Volume 1

Part of the book series: From Pole to Pole ((POLE))

Abstract

The aim of this chapter is to illustrate in the context of cold adaptation of the Antarctic teleosts the icefish as a unique case-study of physiological responses to genetic changes, i.e. loss of hemoglobin (Hb) and myoglobin (Mb), without apparent immediate compensatory mutations. This offers the opportunity to study the effects of epigenetic compensations and how these have been integrated at different hierarchic levels in the emergent new phenotype. However, the available evidence does not allow to clarify whether the disaptive icefish phenotype, despite its exposure to stably high environmental pO2, may have been predisposed to increased sensitivity to hypoxic disturbance (hypoxemic and intracellular hypoxia); nor to which extent this organism has been able to reprogram gene expression within aerobic tissues (including the heart), recruiting silent, alternative, or redundant pathways for correcting a deleterious, but non-lethal O2-transport phenotype. Therefore, in updating the pertinent literature, we will emphasize our view (Garofalo et al. 2009) that an inherent morpho-functional plasticity of the basic teleost cardio-circulatory system was sufficient to allow structural and functional expansion of an alternative (Hb-free blood and Mb-free cardiac muscle) design to cope with new demands. Conceivably, this disaptive condition, followed by adaptive recovery, was facilitated by the lack of competition from the comparatively sparse non-notothenioid ichthyofauna (Montgomery and Clements 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acierno R, Agnisola C, Tota B, Sidell BD (1997) Myoglobin enhances cardiac performance in antarctic ice fish species that express the protein. Am J Physiol 273:100–106

    Google Scholar 

  • Acierno R, MacDonald JA, Agnisola C, Tota B (1995) Blood volume in the hemoglobinless Antarctic teleost Chionodraco hamatus (Lönnberg). J Exp Zool 272:407–409

    Google Scholar 

  • Agnisola C, Acierno R, Calvo J, Farina F, Tota B (1997) In vitro cardiac performance in the sub-Antarctic notothenioids Eleginops maclovinus (subfamily Eleginopinae), Paranotothenia magellanica, and Patagonotothen tessellata (subfamily Nototheniinae). Comp Biochem Physiol A 118:1437–1445

    Google Scholar 

  • Amelio D, Garofalo F, Pellegrino D, Giordano F, Tota B, Cerra MC (2006) Cardiac expression and distribution of nitric oxide synthases in the ventricle of the coldadapted Antarctic teleosts, the hemoglobinless Chionodraco hamatus and the red-blooded Trematomus bernacchii. Nitric Oxide 15:190–198

    CAS  Google Scholar 

  • Andreakis N, D’Aniello S, Albalat R, Patti FP, Garcia-Fernàndez J, Procaccini G, Sordino P, Palumbo A (2010) Evolution of the nitric oxide synthase family in Metazoans. Mol Biol Evol 28(1):163–179

    Google Scholar 

  • Axelsson M, Agnisola C, Nilsson S, Tota B (1998) Fish cardio-circulatory function in the cold. In: Pörtner HO, Playle R (eds) Cold ocean physiology. Cambridge University Press, Cambridge, pp 327–364

    Google Scholar 

  • Balushkin AV (2000) Morphology, classification and evolution of notothenioid fishes of the Southern Ocean. J Ichthyol 40:74–109

    Google Scholar 

  • Baum DA, Larson A (1991) Adaptation reviewed: a phylogenetic methodology for studying character macroevolution. Syst Zool 40:1–18

    Google Scholar 

  • Beers JM, Borley KA, Sidell BD (2010) Relationship among circulating hemoglobin, nitric oxide synthase activities and angiogenic poise in red- and white-blooded Antarctic notothenioid fishes. Comp Biochem Physiol A 156:422–429

    Google Scholar 

  • Bone Q (1978) Myotomal muscle fiber types in Scomber and Katsuwonnus. In: Sharp GD, Dizon AE (eds) The physiological ecology of tunas. Academic Press, New York, pp 183–204

    Google Scholar 

  • Bossen EH, Sommer JR,Waugh RA (1978) Comparative stereology of the mouse and finch left ventricle. Tissue Cell 10:773–784

    Google Scholar 

  • Bushnell PG, Brill RW (1992) Oxygen transport and cardiovascular responses in Skipjack tuna (Katsuwonus pelamis) and yellow fin tuna (Thunnus albacares) exposed to acute hypoxia. J Comp Physiol 162B:131–143

    Google Scholar 

  • Cerra MC, Canonaco M, Acierno R, Tota B (1997) Different binding activity of A- and B-type natriuretic hormones in the heart of two antarctic teleosts, the red-blooded Trematomus bernacchii and the hemoglobinless Chionodraco hamatus. Comp Biochem Physiol A 118:993–999

    Google Scholar 

  • Cheng C-HC, Chen L (1999) Evolution of an antifreeze glycoprotein. Nature 40:443–444

    Google Scholar 

  • Cheng C-HC, Detrich HW III (2007) Molecular ecophysiology of Antarctic notothenioid fishes. Philos Trans R Soc London, Ser B 362:2215–2232

    CAS  Google Scholar 

  • Clarke A, Johnston IA (1996) Evolution and adaptive radiation of Antarctic fishes. Trends Ecol Evol 11:212–218

    CAS  Google Scholar 

  • Clarke A, Murphy EJ, Meredith MP, King JC, Peck LS, Barnes DK, Smith RC (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos Trans R Soc London B Biol Sci 362(1477):149–166

    Google Scholar 

  • Cocca E, Ratnayake-Lecamwasam M, Parker SK, Camardella L, Ciaramella M, di Prisco G, Detrich WH III (1995) Genomic remnants of α-globin genes in the haemoglobin less Antarctic icefishes. Proc Nat Acad Sci U S A 92:1817–1821

    CAS  Google Scholar 

  • Davie PS, Franklin CE (1992) Myocardial oxygen consumption and mechanical efficiency of a perfused dogfish heat preparation. J Comp Physiol 162:256–262

    CAS  Google Scholar 

  • Detrich WH III, Amemiya CT (2010) Antarctic notothenioid fishes: genomic resources and strategies for analyzing an adaptive radiation. Integr Comp Biol 50(6):1009–1017

    Google Scholar 

  • Detrich WH III, Yergeau DA (2004) Comparative genomics in erythropoietic gene discovery: synergisms between the Antarctic icefishes and the zebrafish. Methods Cell Biol 77:475–503

    CAS  Google Scholar 

  • Detrich III WH, Parker SK, Williams RC Jr, Nogales E, Downing KH (2000) Cold adaptation of microtubule assembly and dynamics. Structural interpretation of primary sequence changes present in the alpha- and beta-tubulins of Antarctic fishes. J Biol Chem 275(47):37038–37047

    Google Scholar 

  • Eastman JT (1993) Antarctic Fish Biology. Evolution in a unique environment. Academic Press, San Diego, pp 1–322

    Google Scholar 

  • Eastman JT (1995) The evolution of Antarctic fishes: questions for consideration and avenues for research. Cybium 19:371–389

    Google Scholar 

  • Eastman JT (1997) Phyletic divergence and specialization for pelagic life in the Antarctic notothenioid fish Pleuragramma antarcticum. Comp Biochem Physiol A 118:1095–1101

    Google Scholar 

  • Eastman JT, Eakin RR (2000) An updated species list for notothenioid fish (Perciformes; Notothenioidei), with comments on Antarctic species. Arch Fish Mar Res 48:11–20

    Google Scholar 

  • Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:94–107

    Google Scholar 

  • Eastman JT, Lannoo MJ (2004) Brain and sense organ anatomy and histology in hemoglobinless Antarctic icefishes (Perciformes: Notothenioidei: Channichthyidae). J Morphol 260:117–140

    Google Scholar 

  • Egginton S (1996) Blood rheology of Antarctic fishes: viscosity adaptations at very low temperatures. J Fish Biol 48(3):513–521

    Google Scholar 

  • Egginton S, Davison W (1998) Effects of environmental and experimental stress on Antarctic fishes. In: Pörtner HO, Playle R (eds) Cold ocean physiology. Cambridge University Press, Cambridge, pp 299–326

    Google Scholar 

  • Egginton S, Sidell BD (1989) Thermal acclimation induces adaptive changes in subcellular structure of fish skeletal muscle. Am J Physiol 256:R1–R9

    CAS  Google Scholar 

  • Egginton S, Stilbeck C, Hoofd L, Calvo J, Johnston IA (2002) Peripheral oxygen transport in skeletal muscle of Antarctic and sub-Antarctic notothenioid fish. J Exp Biol 205:769–779

    CAS  Google Scholar 

  • Elder HY (1975) Muscle structure. In: Usherwood PR (ed) Insect muscle. Academic Press, London, pp 1–74

    Google Scholar 

  • Farrell AP, Jones DR (1992) The heart. Fish Physiol 12A:1–88

    Google Scholar 

  • Farrell AP, Wood S, Hart T, Driedzic WR (1985) Mycordial oxygen consumption in the sea raven, Hemitripterus americanus: the effects of volume loading, pressure loading and progressive hypoxia. J Exp Biol 117:237–250

    Google Scholar 

  • Fletcher GL, Hew CL, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63:359–390

    CAS  Google Scholar 

  • Garofalo F, Amelio D, Cerra MC, Tota B, Sidell BD, Pellegrino D (2009) Morphological and physiological study of the cardiac NOS/NO system in the Antarctic (Hb/Mb) icefish Chaenocephalus aceratus and in the red-blooded Trematomus bernacchii. Nitric Oxide 20(2):69–78

    CAS  Google Scholar 

  • Gladwin MT, Kim-Shapiro DB (2008) The functional nitrite reductase activity of the heme-globins. Blood 112:2626–2647

    Google Scholar 

  • Graham MS, Farrell AP (1990) Myocardial oxygen consumption in trout acclimated to 5 and 15°C. Physiol Zool 63:536–554

    Google Scholar 

  • Hamoir G, Gerardin-Otthiers N (1980) Differentiation of the sarcoplasmic proteins of white, yellowish and cardiac muscle of an antarctic hemoglobin-free fish, Champsocephalus gunnari. Comp Biochem Physiol B 65:199–206

    Google Scholar 

  • Harrison P, Zummo G, Farina F, Tota B, Johnston IA (1991) Gross anatomy, myoarchitecture, and ultrastructure of the heart ventricle in the haemoglobinless icefish Chaenocephalus aceratus. Can J Zool 69:1339–1347

    Google Scholar 

  • Heise K, Estevez MS, Puntarulo S, Galleano M, Nikinmaa M, Pörtner HO, Abele D (2007) Effects of seasonal and latitudinal cold on oxidative stress parameters and activation of hypoxia inducible factor (HIF-1) in zoarcid fish. J Comp Physiol B 177:765–777

    CAS  Google Scholar 

  • Hemmingsen EA (1991) Respiratory and cardiovascular adaptations in hemoglobinfree fishes: resolved and unresolved problems. In: di Prisco G, Maresca B, Tota B (eds) Biology of antarctic fish. Springer, Berlin, pp 191–203

    Google Scholar 

  • Hemmingsen EA, Douglas EL (1977) Respiratory and circulatory adaptations to the absence of hemoglobin in chaenichthyid fishes. In: Llano GA (ed) Adaptations within Antarctic ecosystems. In: Proceedings of 3rd SCAR symposium on Antarctic biology. Gulf Publishing Co, Houston, Texas, pp 479–487

    Google Scholar 

  • Hemmingsen EA, Douglas EL, Johansen K, Millard RW (1972) Aortic blood flow and cardiac output in the hemoglobin-free fish Chaenocephalus aceratus. Comp Biochem Physiol A 43:1045–1051

    CAS  Google Scholar 

  • Hochachka PW, Rupert JL, Monge C (1999) Adaptation and conservation of physiological systems in the evolution of human hypoxia tolerance. Comp Biochem Physiol A: Mol Integr Physiol 120:1–17

    Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New York

    Google Scholar 

  • Holeton GF (1970) Oxygen uptake and circulation by a haemoglobinless fish (Chaenocephalus aceratus Lönnberg) compared with three red-blooded Antarctic fish. Comp Biochem Physiol 34:457–471

    CAS  Google Scholar 

  • Hoppeler H, Lindstedt SL (1985) Malleability of skeletal muscle in overcoming limitations: structural elements. J Exp Biol 115:355–364

    CAS  Google Scholar 

  • Houlihan DF, Agnisola C, Lyndon AR, Gray C, Hamilton NM (1988) Protein synthesis in a fish heart: responses to increased power output. J Exp Biol 137:565–587

    CAS  Google Scholar 

  • Icardo JM, Colvee E, Cerra MC, Tota B (1999) Bulbus arteriosus of the Antarctic teleosts I. The white-blooded chionodraco hamatus. Anat Rec 254:396–407

    CAS  Google Scholar 

  • Jakubowski M (1982) Dimensions of respiratory of the gills and skin in the Antarctic white-blooded fish, Chaenocephalus aceratus Lönnberg (Chaenichthyidae). Z mikrosk-anatom Forsch Leipzig 96:145–156

    CAS  Google Scholar 

  • James NT, Meek GA (1979) Stereological analyses of the structure of mitochondria in pigeon skeletal muscle. Cell Tissue Res 202:493–503

    CAS  Google Scholar 

  • Jobling M (1994) Fish bioenergetics. Chapman and Hall, London, pp 1–309

    Google Scholar 

  • Johnston IA (1989) Antarctic fish muscles: structure, function and physiology. Antarct Sci 1:97–108

    Google Scholar 

  • Johnston IA, Maitland B (1980) Temperature acclimation in crucian carp (Carassius carassius L.) morphometric analyses of muscle fibre ultrastructure. J Fish Biol 17:113–125

    Google Scholar 

  • Johnston IA, Moon TW (1981) Fine structure and metabolism of multiple innervated fast muscle-fibers in teleost fish. Cell Tissue Res 219:93–109

    CAS  Google Scholar 

  • Johnston IA, Fernandez DA, Calvo J, Vieira VLA, North AW, Abercromby M, Garland T (2003) Reduction in muscle fibre number during adaptive radiation in notothenioid fishes: a phylogenetic perspective. J Exp Biol 206:2595–2609

    Google Scholar 

  • Johnston IA, Fitch N, Zummo G, Wood RE, Harrison P, Tota B (1983) Morphometric and ultrastructural features of the ventricular myocardium of the haemoglobinless icefish Chaenocephalus aceratus. Comp Biochem Physiol A 76:475–480

    Google Scholar 

  • Johnston IA, Guderley H, Franklin CE, Crockford T, Kamunde C (1994) Are mitochondria subject to evolutionary temperature adaptation? J Exp Biol 195:293–306

    Google Scholar 

  • Johnston IA, Vieira VLA, Fernández DA, Abercromby M, Brodeur JC, Peck L, Calvo J (2002) Muscle growth in polar fish: a study of Harpagifer species with sub-Antarctic and Antarctic distributions. Fish Sci 68(Suppl II):1023–1028

    Google Scholar 

  • Josephson R, Young D (1985) A synchronous insect muscle with an operating frequency greater than 500 Hz. J Exp Biol 118:185–208

    Google Scholar 

  • Kiceniuk JW, Jones DR (1977) The oxygen transport system in trout (Salmo gairdneri) during sustained exercise. J Exp Biol 69:247–260

    Google Scholar 

  • Kock KH (2005a) Antarctic icefishes (channichthyidae): a unique family of fishes. A review (Part I). Polar Biol 28:862–895

    Google Scholar 

  • Kock KH (2005b) Antarctic icefishes (channichthyidae): a unique family of fishes. A review (Part II). Polar Biol 28:895–909

    Google Scholar 

  • Londraville RL, Sidell BD (1990) Ultrastructure of aerobic muscle in Antarctic fishes may contribute to diffusive fluxes. J Exp Biol 150:205–220

    Google Scholar 

  • Luciano JA, Tan T, Zhang Q, Huang E, Scholz P, Weiss HR (2008) Hypoxia inducible factor-1 improves the actions of nitric oxide and natriuretic peptides after simulated ischemia-reperfusion. Cell Physiol Biochem 21:421–428

    CAS  Google Scholar 

  • Lushchak VI, Bagnyukova TV (2007) Hypoxia induces oxidative stress in tissues of a goby, the rotan Percottus glenii. Comp Biochem Physiol B: Biochem Mol Biol 148(4):390–397

    Google Scholar 

  • Macdonald JA, Wells RMG (1991) Viscosity of body fluids from Antarctic notothenioid fish. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer-Verlag, Berlin, pp 163–178

    Google Scholar 

  • Mark FC, Bock C, Pörtner HO (2002) Oxygen-limited thermal tolerance in Antarctic fish investigated by MRI and 31P-MRS. Am J Physiol Regul Integr Comp Physiol 283:R1254–R1262

    CAS  Google Scholar 

  • Meeson AP, Radford N, Shelton JM, Mammen PP, DiMaio JM, Hutcheson K, Kong Y, Elterman J, Williams RS, Garry DJ (2001) Adaptive mechanisms that preserve cardiac function in mice without myoglobin. Circ Res 88:713–720

    CAS  Google Scholar 

  • Montgomery J, Clements K (2000) Disaptation and recovery in the evolution of Antarctic fishes. Trends Ecol Evol 15:267–271

    Google Scholar 

  • Morlà M, Alvar GN, Rahman I, Motterlini R, Saus C, Morales-Nin B, Company JB, Busquets X (2003) Nitric oxide synthase type I (nNOS), vascular endothelial growth factor (VEGF) and myoglobin-like expression in skeletal muscle of Antarctic ice fishes (Notothenioidei: Channichthyidae). Polar Biol 26:458–462

    Google Scholar 

  • Moylan TJ, Sidell BD (2000) Concentrations of myoglobin mRNA in heart ventricle from Antarctic fishes. J Exp Biol 203:1277–1286

    CAS  Google Scholar 

  • Near TJ, Parker SK, Detrich HW III (2006) A genomic fossil reveals key steps in hemoglobin loss by the antarctic ice fishes. Mol Biol Evol 23(11):2008–2016

    CAS  Google Scholar 

  • O’Brien K, Mueller IA (2010) The unique mitochondrial form and function of Antarctic channichthyid ice fishes. Int Comp Biol 50:993–1008

    Google Scholar 

  • O’Brien KM, Skilbeck C, Sidell BD, Egginton S (2003) Muscle fine structure may maintain the function of oxidative fibres in haemoglobin less Antarctic fishes. J Exp Biol 206:411–421

    Google Scholar 

  • O'Brien KM, Sidell BD (2000) The interplay among cardiac ultrastructure, metabolism and the expression of oxygen-binding proteins in Antarctic fishes. J Exp Biol 203:1287–1297

    Google Scholar 

  • O’Brien KM, Xue H, Sidell BD (2000) Quantification of diffusion distance within the spongy myocardium of hearts from antarctic fishes. Respir Physiol 122:71–80

    Google Scholar 

  • Pellegrino D, Acierno R, Tota B (2003) Control of cardiovascular function in the icefish Chionodraco hamatus: involvement of serotonin and nitric oxide. Comp Biochem Physiol A: Mol Integr Physiol 134(2):471–480

    CAS  Google Scholar 

  • Pellegrino D, Palmerini CA, Tota B (2004) No haemoglobin but NO: the ice fish (Chionodraco hamatus) heart as a paradigm. J Exp Biol 207:3855–3864

    CAS  Google Scholar 

  • Petricorena ZL, Somero GN (2007) Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species. Comp Biochem Physiol A: Mol Integr Physiol 147:799–807

    Google Scholar 

  • Place SP, Zippay ML, Hofmann GE (2004) Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes. Am J Physiol 287:R429–R436

    CAS  Google Scholar 

  • Pörtner HO, Peck LS, Somero G (2007) Thermal limits and adaptation in marine ectotherm: an integrative view. Philos Trans R Soc B 362:2233–2258

    Google Scholar 

  • Römisch K, Collie N, Soto N, Logue J, Lindsay M, Scheper W, Cheng C-HC (2003) Protein translocation across the endoplasmic reticulum membrane in cold-adapted organisms. J Biol Chem 278:37998–38003

    Google Scholar 

  • Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature 173:848

    CAS  Google Scholar 

  • Shaw AW, Vosper AJ (1977) Solubility of nitric oxide in aqueous and nonaqueous solvents. J Chem Soc Faraday Trans 8:1239–1244

    Google Scholar 

  • Sidell BD (1998) Intracellular oxygen diffusion: the roles of myoglobin and lipid at cold body temperature. J Exp Biol 201:1118–1127

    Google Scholar 

  • Sidell BD, O’Brien KM (2006) When bad things happen to good fish: the loss of haemoglobin and myoglobin expression in Antarctic ice fishes. J Exp Biol 209:1791–1802

    CAS  Google Scholar 

  • Sidell BD, Vayda ME, Small DJ, Moylan TJ, Londraville RL, Yuan ML, Rodnick KJ, Eppley ZA, Costello L (1997) Variable expression of myoglobin among the hemoglobinless Antarctic icefishes. Proc Nat Acad Sci U S A 94:3420–3424

    CAS  Google Scholar 

  • Small DJ, Moylan T, Vayda ME, Sidell BD (2003) The myoglobin gene of the Antarctic ice fish, Chaenocephalus aceratus, contains a duplicated TATAAAA sequence that interferes with transcription. J Exp Biol 206:131–139

    CAS  Google Scholar 

  • Somero GN, Fields PA, Hofmann GE, Weinstein RB, Kawall H (1998) Cold adaptation and stenothermy in Antarctic notothenioid fishes: what has been gained and what has been lost? In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. A biological overview. Springer-Verlag, Italy, pp 97–109

    Google Scholar 

  • Storelli C, Acierno R, Maffia M (1998) Membrane lipid and protein adaptations in Antarctic fish. In: Pörtner HO, Playle R (eds) Cold ocean physiology. Cambridge University Press, Cambridge, pp 166–189

    Google Scholar 

  • Thomas DD, Liu X, Kantrow SP, Lancaster JP Jr (2001) The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Nat Acad Sci U S A 98(1):355–360

    CAS  Google Scholar 

  • Tota B, Cerra MC, Mazza R, Pellegrino D, Icardo J (1997) The heart of the Antarctic icefish as paradigm of cold adaptation. J Therm Biol 22:409–417

    Google Scholar 

  • Tota B, Gattuso A (1996) Heart ventricle pumps in teleosts and elasmobranchs: a morphodynamic approach. J Exp Zool 275:162–171

    Google Scholar 

  • Tota B, Acierno R, Agnisola C (1991a) Mechanical performance of the isolated and perfused heart of the haemoglobinless Antarctic icefish Chionodraco hamatus (Loönnberg): effects of loading conditions and temperature. Philos Trans R Soc London B 332:191–198

    Google Scholar 

  • Tota B, Agnisola C, Schioppa M, Acierno R, Harrison P, Zummo G (1991b) Structural and mechanical characteristics of the heart of the ice fish Chionodraco hamatus (Lönnberg). In: di Prisco G, Maresca B, Tota B (eds) Biology of antarctic fish. Springer, Berlin, pp 204–219

    Google Scholar 

  • Twelves EL (1972) Blood volume of two Antarctic fishes. Br Antarct Surv Bull 31:85–92

    Google Scholar 

  • Urschel M, O’Brien KM (2008) High mitochondrial densities in the hearts of Antarctic ice fishes are maintained by an increase in mitochondrial size rather than mitochondrial biogenesis. J Exp Biol 211:2638–2646

    CAS  Google Scholar 

  • Vayda ME, Small DJ, Yuan M, Costello L, Sidell BD (1997) Conservation of the myoglobin gene among Antarctic notothenioid fishes. Mol Mar Biol Biotechnol 6:207–216

    CAS  Google Scholar 

  • Verde C, Giordano D, Russo R, di Prisco G (2012) The adaptive evolution of polar fishes. Lessons from the function of hemoproteins. In: di Prisco G, Verde C (eds) Adaptation and evolution in marine environments—The impacts of global change on biodiversity, vol 1. Series “From Pole to Pole”. Springer, Berlin, pp 197–213

    Google Scholar 

  • Vogel W, Kock KH (1981) Morphology of gill vessels in icefish. Arch Fisch Wiss 31:139–150

    Google Scholar 

  • Walvig F (1960) The integument of the ice fish Chaenocephalus aceratus (Loönnberg). Nytt Mag Zool Oslo 6:111–120

    Google Scholar 

  • Weidemann A, Klanke B, Wagner M, Volk T, Willam C, Wiesener MS, Eckardt KU, Warnecke C (2008) Hypoxia, via stabilization of the hypoxia-inducible factor HIF-1alpha, is a direct and sufficient stimulus for brain-type natriuretic peptide induction. Biochem J 409:233–242

    CAS  Google Scholar 

  • Wood CM, Pieprzak P, Trott JN (1979) The influence of temperature and anaemia on the adrenergic and cholinergic mechanisms controlling heart rate in the rainbow trout. Can J Zool 57:2440–2447

    CAS  Google Scholar 

  • Wujcik JM, Wang G, Eastman JT, Sidell BD (2007) Morphometry of retinal vasculature in Antarctic fishes is dependent upon the level of haemoglobin in circulation. J Exp Biol 210:815–824

    CAS  Google Scholar 

  • Yergeau DA, Cornell CN, Parker SK, Zhou Y, Detrich HW III (2005) Bloodthirsty, an RBCC/TRIM gene required for erythropoiesis in zebrafish. Dev Biol 283:97–112

    CAS  Google Scholar 

  • Zummo G, Acierno R, Aginisola C, Tota B (1995) The heart of the ice fish: bio construction and adaptation. Braz J Med Biol Res 28:1265–1276

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Tota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tota, B., Amelio, D., Garofalo, F., Pellegrino, D. (2012). Evolutionary Adaptation and Disaptation in the Cold: the Icefish Paradigm. In: di Prisco, G., Verde, C. (eds) Adaptation and Evolution in Marine Environments, Volume 1. From Pole to Pole. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27352-0_7

Download citation

Publish with us

Policies and ethics