Skip to main content

Excess Oxygen in Polar Evolution: A Whole Organism Perspective

  • Chapter
  • First Online:

Part of the book series: From Pole to Pole ((POLE))

Abstract

The Antarctic is characterized by more stable living conditions than the Arctic. This is due to the partial isolation of the continent and of the surrounding oceans by the Antarctic circumpolar current.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahsanullah M, Newell RC (1971) Factors affecting the heart rate of the shore crab Carcinus maenas (L.). Comp Biochem Physiol 39:277–287

    Article  Google Scholar 

  • Angersbach D, Decker H (1978) Oxygen transport in crayfish blood: effect of thermal acclimation, and short-term fluctuations related to ventilation and cardiac performance. J Comp Physiol 123:105–112

    Google Scholar 

  • Angiletta MJJ (2009) Thermal Adaptation. A theoretical and empirical synthesis. Oxford University Press, New York 320

    Book  Google Scholar 

  • Aronson RB, Thatje S, Clarke A, Peck LS, Blake DB, Wilga CD, Seibel BA (2007) Climate change and invasibility of the Antarctic benthos. Annu Rev Ecol Evol Syst 38:129–154

    Article  Google Scholar 

  • Astorga A, Fernández M, Boschi EE, Lagos N (2003) Two oceans, two taxa and one mode of development: latitudinal diversity patterns of South American crabs and test for possible causal processes. Ecol Lett 6:420–427

    Article  Google Scholar 

  • Beers JM, Sidell BD (2011) Thermal tolerance of Antarctic Notothenioid fishes correlates with level of circulating hemoglobin. Physiol Biochem Zool 84:353–362

    Article  CAS  Google Scholar 

  • Booth CE, McMahon BR (1992) Aerobic capacity of the blue crab, Callinectes sapidus. Physiol Zool 65:1074–1091

    Google Scholar 

  • Booth C, McMahon B, Pinder A (1982) Oxygen uptake and the potentiating effects of increased hemolymph lactate on oxygen transport during exercise in the blue crab, Callinectes sapidus. J Comp Physiol B 148:111–121

    Article  CAS  Google Scholar 

  • Boyle K-L, Dillaman RM, Kinsey ST (2003) Mitochondrial distribution and glycogen dynamics suggest diffusion constraints in muscle fibers of the blue crab, Callinectes sapidus. J Exp Zool 297A:1–16

    Article  Google Scholar 

  • Brandt A (1999) On the origin and evolution of Antarctic Peracarida. Sci Mar 63(Suppl 1):261–274

    Google Scholar 

  • Buchholz F, Saborowski R (2000) Metabolic and enzymatic adaptations in northern krill, Meganyctiphanes norvegica, and Antarctic krill, Euphausia superba. Can J Fish Aquat Sci 57:115–129

    Article  CAS  Google Scholar 

  • Burke EM (1979) Aerobic and anaerobic metabolism during activity and hypoxia in two species of intertidal crabs. Biol Bull 156:157–168

    Article  CAS  Google Scholar 

  • Burmeister A, Sainte-Marie B (2010) Pattern and causes of a temperature-dependent gradient of size at terminal moult in snow crab (Chionoecetes opilio) along West Greenland. Polar Biol 33:775–788

    Article  Google Scholar 

  • Burnett LE, Scholnick DA, Mangum CP (1988) Temperature sensitivity of molluscan and arthropod haemocyanins. Biol Bull 174:153–162

    Article  CAS  Google Scholar 

  • Carlsson K-H, Gäde G (1986) Metabolic adaptation of the horseshoe crab, Limulus polyphemus, during exercise and environmental hypoxia and subsequent recovery. Biol Bull 171:217–235

    Article  CAS  Google Scholar 

  • Charmantier G, Charmantier-Daures M (1995) Osmoregulation and salinity tolerance in zoeae and juveniles of the snow crab Chionoecetes opilio. Aquat Living Resour 8:171–179

    Article  Google Scholar 

  • Chown SL, Addo-Bediako A, Gaston KJ (2003) Forum: Metabolic cold adaptation in arthropods: a smaller-scale perspective. Funct Ecol 17:562–572

    Article  Google Scholar 

  • Christiansen ME (ed) (1969) Crustacea Decapoda Brachyura, vol 2. In: Marine invertebrates of Scandinavia, Universitetsforlaget, Oslo

    Google Scholar 

  • Clarke A (1977) Lipid class and fatty acid composition of Chorismus antarcticus (Pfeffer) (Crustacea: Decapoda) at South Georgia. J Exp Mar Biol Ecol 28:297–314

    Article  CAS  Google Scholar 

  • Coppes Petricorena ZL, Somero GN (2007) Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species. Comp Biochem Physiol A 147:799–807

    Article  Google Scholar 

  • Cummings V, Hewitt J, Van Rooyen A, Currie K, Beard S, Thrush S, Norkko J, Barr N, Heath P, Halliday NJ, Sedcole R, Gomez A, McGraw C, Metcalf V (2011) Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica. PLoS ONE 6(1):e16069

    Article  CAS  Google Scholar 

  • Ellington WR (1983) The recovery from anaerobic metabolism in invertebrates. J Exp Zool 228:431–444

    Article  CAS  Google Scholar 

  • Frederich M, Pörtner HO (2000) Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. Am J Physiol Regul Integr Comp Physiol 279:R1531–R1538

    CAS  Google Scholar 

  • Frederich M, Sartoris FJ, Arntz WE, Pörtner HO (2000) Haemolymph Mg2+ regulation in decapod crustaceans: physiological correlates and ecological consequences in polar areas. J Exp Biol 203:1383–1393

    CAS  Google Scholar 

  • Garofalo F, Pellegrino D, Amelio D, Tota B (2009) The Antarctic hemoglobinless icefish, fifty five years later: a unique cardiocirculatory interplay of disaptation and phenotypic plasticity. Comp Biochem Physiol A 154:10–28

    Article  CAS  Google Scholar 

  • Heilmayer O, Brey T, Pörtner HO (2004) Growth efficiency and temperature in scallops: a comparative analysis of species adapted to different temperatures. Funct Ecol 18:641–647

    Article  Google Scholar 

  • Heilmayer O, Thatje S, McClelland C, Conlan K, Brey T (2008) Changes in biomass and elemental composition during early ontogeny of the Antarctic isopod crustacean Ceratoserolis trilobitoides. Polar Biol 31:1325–1331

    Article  Google Scholar 

  • Holmes JM, Whiteley NM, Magnay JL, El Haj AJ (2002) Comparison of the variable loop regions of myosin heavy chain genes from Antarctic and temperate isopods. Comp Biochem Physiol B 131:349–359

    Article  CAS  Google Scholar 

  • Hubley MJ, Locke BR, Moerland TS (1996) The effects of temperature, pH, and magnesium on the diffusion coefficient of ATP in solutions of physiological ionic strength. Biochim Biophys Acta 1291:115–121

    Article  Google Scholar 

  • Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4:131–135

    Article  CAS  Google Scholar 

  • Janssen HH, Hoese B (1993) Marsupium morphology and brooding biology of the Antarctic giant isopod Glyptonotus antarcticus Eights 1853 (Crustacea, Isopoda, Chaetiliidae). Polar Biol 13:145–149

    Article  Google Scholar 

  • Johnson LK, Dillaman RM, Gay DM, Blum JE, Kinsey ST (2004) Metabolic influences of fiber size in aerobic and anaerobic locomotor muscles of the blue crab, Callinectes sapidus. J Exp Biol 207:4045–4056

    Article  CAS  Google Scholar 

  • Jokumsen A, Wells RMG, Ellerton HD, Weber RE (1981) Haemocyanin of the giant Antarctic isopod, Glyptonotus antarcticus: structure and effects of temperature and pH on its oxygen affinity. Comp Biochem Physiol 70:91–95

    Article  Google Scholar 

  • Kinsey ST, Moerland TS (2002) Metabolite diffusion in giant muscle fibers of the spiny lobster Panulirus argus. J Exp Biol 205:3377–3386

    CAS  Google Scholar 

  • Kinsey ST, Locke BR, Dillaman RM (2011) Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle. J Exp Biol 214:263–274

    Article  Google Scholar 

  • Klages M, Gutt J, Starmans A, Bruns T (1995) Stone crabs close to the Antarctic Continent: Lithodes murrayi Henderson, 1888 (Crustacea; Decapoda; Anomura) off Peter I Island (68 51’S, 90 51’W). Polar Biol 15:73–75

    Article  Google Scholar 

  • Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer W (2007) Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett 256:295–313

    Article  CAS  Google Scholar 

  • Lang F, Sutterlin A, Prosser CL (1970) Electrical and mechanical properties of the closer muscle of the Alaskan king crab Paralithodes camtschatica. Comp Biochem Physiol A 32:615–628

    Article  CAS  Google Scholar 

  • Lannig G, Eilers S, Pörtner HO, Sokolova IM, Bock C (2010) Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas—changes in metabolic pathways and thermal response. Mar Drugs 8(8):2318–2339

    Article  CAS  Google Scholar 

  • Londraville RL, Sidell BD (1990) Ultrastructure of aerobic muscle in Antarctic fishes may contribute to maintenance of diffusive fluxes. J Exp Biol 150:205–220

    Google Scholar 

  • Luxmoore RA (1982) The reproductive biology of some serolid isopods from the Antarctic. Polar Biol 1:3–11

    Article  Google Scholar 

  • Mark FC, Bock C, Pörtner HO (2002) Oxygen-limited thermal tolerance in Antarctic fish investigated by MRI and 31P-MRS. Am J Physiol 283(5):R1254–1262

    CAS  Google Scholar 

  • Mauro NA, Mangum CP (1982) The role of the blood in the temperature dependence of oxidative metabolism in decapod crustaceans. I. Intraspecific responses to seasonal differences in temperature. J Exp Zool 219:179–188

    Article  Google Scholar 

  • McMahon BR, McDonald DG, Wood CM (1979) Ventilation, oxygen uptake and haemolymph oxygen transport, following enforced exhausting activity in the dungeness crab Cancer magister. J Exp Biol 80:271–285

    Google Scholar 

  • Metzger R, Sartoris FJ, Langenbuch M, Pörtner HO (2007) Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus. J Therm Biol 32:144–151

    Article  Google Scholar 

  • Morris S, Bridges CR (1989) Interactive effects of temperature and L-lactate on the binding of oxygen by the haemocyanin of two arctic boreal crabs, Hyas araneus and Hyas coarctatus. Physiol Zool 62:62–82

    CAS  Google Scholar 

  • Munday PL, Crawley N, Göran NE (2009) Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Mar Ecol Prog Ser 388:235–242

    Article  CAS  Google Scholar 

  • O’Brien KM, Skilbeck C, Sidell BD, Egginton S (2003) Muscle fine structure may maintain the function of oxidative fibres in haemoglobinless Antarctic fishes. J Exp Biol 206:411–421

    Article  Google Scholar 

  • Onnen T, Zebe E (1983) Energy metabolism in the tail muscles of the shrimp Crangon crangon during work and subsequent recovery. Comp Biochem Physiol A 74:833–838

    Article  Google Scholar 

  • Pearse JS, Lockhart SJ (2004) Reproduction in cold water: paradigm changes in the 20th century and a role for cidaroid sea urchins. Deep Sea Res II 51:1533–1549

    Article  Google Scholar 

  • Peck LS (2005) Prospects for survival in the Southern Ocean: vulnerability of benthic species to climate change. Antarct Sci 17:497–507

    Article  Google Scholar 

  • Peck LS, Pörtner HO, Hardewig I (2002) Metabolic demand, oxygen supply, and critical temperatures in the Antarctic bivalve Laternula elliptica. Physiol Biochem Zool 75:123–133

    Article  Google Scholar 

  • Pörtner HO (2002a) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A 132(4):739–761

    Google Scholar 

  • Pörtner HO (2002b) Environmental and functional limits to muscular exercise and body size in marine invertebrate athletes. Comp Biochem Physiol 133A:303–321

    Google Scholar 

  • Pörtner HO (2006) Climate-dependent evolution of Antarctic ectotherms: an integrative analysis. Deep-Sea Res II 53:1071–1104

    Article  Google Scholar 

  • Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217

    Article  Google Scholar 

  • Pörtner HO (2010) Oxygen and capacity limitation of thermal tolerance: a matrix for integrating climate related stressors in marine ecosystems. J Exp Biol 213:881–893

    Article  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322(5901):690–692

    Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    Article  Google Scholar 

  • Pörtner HO, Langenbuch M, Michaelidis B (2005) Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. J Geophys Res 110(C9):C09S10

    Google Scholar 

  • Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Oceanogr 60(4):705–718

    Article  Google Scholar 

  • Pörtner HO, Peck LS, Hirse T (2006) Hyperoxia alleviates thermal stress in the Antarctic bivalve, Laternula elliptica: evidence for oxygen limited thermal tolerance. Polar Biol 29:688–693

    Article  Google Scholar 

  • Pörtner HO, Peck LS, Somero GN (2007) Thermal limits and adaptation: an integrative view (Antarctic ecology: from genes to ecosystems). Philos Trans R Soc B 362:2233–2258. doi:10.1098/rstb.2006.1947

    Article  Google Scholar 

  • Pörtner HO, Peck LS, Somero GN (2012) Mechanisms defining thermal limits and adaptation in marine ectotherms: an integrative view. In: Rogers AD, Johnston NM, Murphy EJ, Clarke A (eds) Antarctic ecosystems: an extreme environment in a changing world, First edn. John Wiley Ltd, Chichester, UK, pp 360–396

    Google Scholar 

  • Pörtner HO, Schulte P, Wood C, Schiemer F (2010) Niche dimensions in fishes: an integrative view. Physiol Biochem Zool 83(5):808–826

    Article  Google Scholar 

  • Post JR, Evans DO (1989) Size-dependent overwinter mortality of young-of-the-year yellow perch (Perca flavescens): laboratory, in situ enclosure, and field experiments. Can J Fish Aquat Sci 46(11):1958–1968

    Article  Google Scholar 

  • Sanders NK, Childress JJ (1990) Adaptations to the deep-sea oxygen minimum layer: oxygen binding by the haemocyanin of the bathypelagic mysid, Gnathophausia ingens Dohrn. Biol Bull 178:286–293

    Article  CAS  Google Scholar 

  • Sänger AM, Davison W, Egginton S (2005) Muscle fine structure reflects ecotype in two nototheniids. J Fish Biol 66:1371–1386

    Article  Google Scholar 

  • Sidell BD, O’Brien KM (2006) When bad things happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes. J Exp Biol 209:1791–1802

    Article  CAS  Google Scholar 

  • Sidell B, Hazel J (1987) Temperature affects the diffusion of small molecules through cytosol of fish muscle. J Exp Biol 129:191–203

    CAS  Google Scholar 

  • Smith CR, Grange LJ, Honig DL, Naudts L, Huber B, Guidi L, Domack E (2011) A large population of king crabs in palmer deep on the west Antarctic Peninsula shelf and potential invasive impacts. Proc R Soc B. doi:10.1098/rspb.2011.1496

    Google Scholar 

  • Sogard SM (1997) Size-selective mortality in the juvenile stage of teleost fishes: a review. Bull Mar Sci 60:1129–1157

    Google Scholar 

  • Sommer A, Klein B, Pörtner HO (1997) Temperature induced anaerobiosis in two populations of the polychaete worm Arenicola marina. J Comp Physiol B 167:25–35

    Article  Google Scholar 

  • Storch D, Santelices P, Barria J, Cabeza K, Pörtner HO, Fernández M (2009) Thermal tolerance of crustacean larvae (zoea I) in two different populations of the kelp crab Taliepus dentatus (Milne-Edwards). J Exp Biol 212:1371–1376

    Article  Google Scholar 

  • Thatje S, Anger K, Calcagno GA, Lovrich GA, Pörtner HO, Arntz WE (2005) Challenging the cold: crabs reconquer the Antarctic. Ecology 86:619–625

    Article  Google Scholar 

  • Thatje S, Hall S, Hauton C, Held C, Tyler P (2008) Encounter of lithodid crab Paralomis birsteini on the continental slope off Antarctica, sampled by ROV. Polar Biol 31:1143–1148

    Article  Google Scholar 

  • Thatje S, Schnack-Schiel S, Arntz WE (2003) Developmental trade-offs in Subantarctic meroplankton communities and the enigma of low decapod diversity in high southern latitudes. Mar Ecol Prog Ser 260:195–207

    Article  Google Scholar 

  • Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev 25:1–45

    Article  Google Scholar 

  • Van Dijk PLM, Tesch C, Hardewig I, Pörtner HO (1999) Physiological disturbances at critically high temperatures: a comparison between stenothermal Antarctic and eurythermal temperate eelpouts (Zoarcidae). J Exp Biol 202:3611–3621

    Google Scholar 

  • Verberk WCEP, Bilton DT, Calosi P, Spicer JI (2011) Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns. Ecology 92:1565–1572

    Article  Google Scholar 

  • Verde C, Giordano D, Russo R, di Prisco G (2012) The adaptive evolution of polar fishes: lessons from the function of hemoproteins. In: di Prisco G, Verde C (eds) Adaptation and evolution in marine environments—the impacts of global change on biodiversity. Springer, Berlin, pp 197–213

    Google Scholar 

  • Walther K, Anger K, Pörtner HO (2010) Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54° vs. 79°N). Mar Ecol Prog Ser 417:159–170

    Article  Google Scholar 

  • Walther K, Sartoris FJ, Bock C, Pörtner HO (2009) Impact of anthropogenic ocean acidification on thermal tolerance of the spider crab Hyas araneus. Biogeosciences 6:2207–2215

    Article  CAS  Google Scholar 

  • Walther K, Sartoris FJ, Pörtner HO (2011) Impacts of temperature and acidification on larval calcium incorporation of the spider crab Hyas araneus from different latitudes (54° vs. 79°N). Mar Biol 158:2043–2053

    Article  CAS  Google Scholar 

  • Webb JB, Eckert GL, Shirley TC, Tamone SL (2007) Changes in embryonic development and hatching in Chionoecetes opilio (snow crab) with variation in incubation temperature. Biol Bull 213:67–75

    Article  Google Scholar 

  • Weinstein RB, Full RJ (1998) Performance limits of low-temperature, continuous locomotion are exceeded when locomotion is intermittent in the ghost crab. Physiol Biochem Zool 71:274–284

    CAS  Google Scholar 

  • Wells RMG (1986) Cutaneous oxygen uptake in the Antarctic icequab, Rhigophila dearborni (Pisces: Zoarcidae). Polar Biol 5:175–179

    Article  Google Scholar 

  • Whiteley NM, Taylor EW, Clarke A, Haj AJE (1997) Haemolymph oxygen transport and acid-base status in Glyptonotus antarcticus Eights. Polar Biol 18:10–15

    Article  Google Scholar 

  • Wiltshire KH, Manly BFJ (2004) The warming trend at Helgoland Roads, North Sea: phytoplankton response. Helgol Mar Res 58:269–273

    Article  Google Scholar 

  • Wittmann AC, Held C, Pörtner HO, Sartoris FJ (2010) Ion regulatory capacity and the biogeography of Crustacea at high southern latitudes. Polar Biol 33:919–928

    Article  Google Scholar 

  • Wittmann AC, Pörtner HO, Sartoris FJ (2012) A role for oxygen delivery and extracellular magnesium in limiting cold tolerance of the sub-Antarctic stone crab Paralomis granulosa? Physiol Biochem Zool 85(3):285–298

    Article  CAS  Google Scholar 

  • Wittmann A, Schröer M, Bock C, Steeger H, Paul R, Pörtner H (2008) Indicators of oxygen- and capacity-limited thermal tolerance in the lugworm Arenicola marina. Clim Res 37:227–240

    Article  Google Scholar 

  • Wittmann AC, Storch D, Anger K, Pörtner HO, Sartoris FJ (2011) Temperature-dependent activity in early life stages of the stone crab Paralomis granulosa (Decapoda, Anomura, Lithodidae): a role for ionic and magnesium regulation? J Exp Mar Biol Ecol 397:27–37

    Article  CAS  Google Scholar 

  • Wood HL, Spicer JI, Kendall MA, Lowe DM, Widdicombe S (2011) Ocean warming and acidification; implications for the Arctic brittlestar Ophiocten sericeum. Polar Biol 34:1033–1044

    Article  Google Scholar 

  • Woodhead PMJ (1964) Changes in the behaviour of the sole, Solea vulgaris, during cold winters, and the relation between the winter catch and sea temperature. Helgol Mar Res 10:328–342

    Google Scholar 

  • Young JS, Peck LS, Matheson T (2006) The effects of temperature on peripheral neuronal function in eurythermal and stenothermal crustaceans. J Exp Biol 209:1976–1987

    Article  Google Scholar 

  • Zainal KAY, Taylor AC, Atkinson RJA (1992) The effect of temperature and hypoxia on the respiratory physiology of the squat lobster, Munida rugosa and Munida sarsi (Anomura, Glatheidae). Comp Biochem Physiol 101:557–567

    Article  Google Scholar 

  • Zielinski S, Pörtner HO (1996) Energy metabolism and ATP free-energy change of the intertidal worm Sipunculus nudus below a critical temperature. J Comp Physiol B 166:495–500

    Article  Google Scholar 

  • Zittier ZMC, Hirse T, Pörtner HO (2012) The synergistic effects of increasing temperature and CO2 levels on exercise capacity and acid-base balance in the spider crab, Hyas araneus. Mar Biol (in revision)

    Google Scholar 

Download references

Acknowledgments

This work is a contribution to the “European Project on Ocean Acidification” (EPOCA) which received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement n° 211384. EPOCA is endorsed by the International Programmes IMBER, LOICZ and SOLAS. This project was also supported by the German program on ocean acidification (BIOACID) funded by the BMBF and by the PACES program of the AWI and by Deutsche Forschungsgemeinschaft grants no. SA 1713/1–1 and 1–2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-O. Pörtner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pörtner, HO., Walther, K., Wittmann, A. (2013). Excess Oxygen in Polar Evolution: A Whole Organism Perspective. In: Verde, C., di Prisco, G. (eds) Adaptation and Evolution in Marine Environments, Volume 2. From Pole to Pole. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27349-0_5

Download citation

Publish with us

Policies and ethics