Skip to main content

Polar Monitoring: Seabirds as Sentinels of Marine Ecosystems

  • Chapter
  • First Online:
Adaptation and Evolution in Marine Environments, Volume 2

Part of the book series: From Pole to Pole ((POLE))

Abstract

The Intergovernmental Panel on Climate Change (IPCC 2007) has highlighted an urgent need to assess how ecosystems respond to climate change. This has placed a large Earth and Life Sciences focus on polar regions, as these areas are so far experiencing the strongest and the most rapid global environmental changes.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-27349-0_12

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebischer NJ, Coulson JC, Colebrook JM (1990) Parallel long-term trends across four marine trophic levels and weather. Nature 347:753–755

    Article  Google Scholar 

  • Ahola MP, Laaksonen T, Eeva T, Lehikoinen E (2007) Climate change can alter competitive relationships between resident and migratory birds. J Anim Ecol 76:1045–1052

    Article  Google Scholar 

  • Ainley DG, Ballard G, Emslie SD, Fraser WR, Wilson PR, Woehler EJ (2003) Adélie penguins and environmental change. Science 300:429–430

    Article  CAS  Google Scholar 

  • Alley RB, Clark PU, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level changes. Science 310:456–460

    Article  CAS  Google Scholar 

  • Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  Google Scholar 

  • Barbraud C, Weimerskirch H (2006) Antarctic birds breed later in response to climate change. Proc Natl Acad Sci U S A 103(16):6248–6251

    Article  CAS  Google Scholar 

  • Barlow EJ, Daunt F, Wanless S, Alvarez D, Reid JM, Cavers S (2011) Weak large-scale population genetic structure in a philopatric seabird, the European Shag Phalacrocorax aristotelis. Ibis 153:768–778

    Article  Google Scholar 

  • Barrett RT, Camphuysen CJ, Anker-Nilssen T, Chardine JW, Furness RW, Garthe S, Hüppop O, Leopold MF, Montevecchi WA, Veit RR (2007) Diet studies of seabirds: a review and recommendations. ICES J Mar Sci 64:1675–1691

    Article  Google Scholar 

  • Batten SD, Mackas DL (2009) Shortened duration of the annual Neocalanus plumchrus biomass peak in the Northeast Pacific. Mar Ecol Prog Ser 393:189–198

    Article  Google Scholar 

  • Beaugrand G, Kirby RR (2010) Climate, plankton and cod. Glob Change Biol 16:1268–1280

    Article  Google Scholar 

  • Beaugrand G, Luczak C, Edwards M (2009) Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob Change Biol 15:1790–1803

    Article  Google Scholar 

  • Beaulieu M, Thierry AM, Handrich Y, Le Maho Y, Massemin-Challet S, Ancel A (2010) Adverse effects of instrumentation in incubating Adélie penguins (Pygoscelis adeliae). Polar Biol 33:485–492

    Article  Google Scholar 

  • Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Bohonak JA (1999) Dispersal, gene flow, and population structure. Quat Rev Biol 74:21–45

    Article  CAS  Google Scholar 

  • Bost CA, Le Maho Y (1993) Seabirds as bio-indicators of changing marine ecosystems: new perspectives. Acta Oecol Int J Ecol 14:463–470

    Google Scholar 

  • Bost CA, Jaeger A, Huin W, Koubbi P, Halsey LG, Handrich Y (2008) Monitoring prey availability via data loggers deployed on seabirds: advances and present limitations. In: Tsukamoto K, Kawamura T, Takeuchi T, Beard TDJ, Kaiser MJ (eds) Fisheries for global welfare and environment. The 5th world fisheries congress, Yokohama, pp 121–137

    Google Scholar 

  • Bost CA, Cotté C, Bailleul F, Cherel Y, Charrassin JB, Guinet C, Ainley DG, Weimerskirch H (2009) The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J Mar Syst 78:363–376

    Article  Google Scholar 

  • Both C, van Turnhout CAM, Bijlsma RG, Siepel H, van Strien AJ, Foppen RPB (2010) Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc R Soc Lond Ser B 277:1259–1266

    Article  Google Scholar 

  • Boulinier T, McCoy KD, Yoccoz NG, Gasparini J, Tveraa T (2008) Public information affects breeding dispersal in a colonial bird: kittiwakes cue on neighbours. Biol Lett 4:538–540

    Article  Google Scholar 

  • Boyd IL, Murray AWA (2001) Monitoring a marine ecosystem using responses of upper trophic level predators. J Anim Ecol 70:747–760

    Article  Google Scholar 

  • Boyd IL, Wanless S, Camphuysen CJ (2006) Top predators in marine ecosystems: their role in monitoring and management. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bradley NL, Leopold AC, Ross J, Huffaker W (1999) Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci U S A 96(17):9701–9704

    Article  CAS  Google Scholar 

  • Bradshaw WE, Holzapfel CM (2006) Evolutionary response to rapid climate change. Science 312:1477–1478

    Article  CAS  Google Scholar 

  • Brodin A, Olsson O, Clark CW (1998) Modelling the breeding cycle of long-lived birds: why do king penguins try to breed late. Auk 115:767–771

    Article  Google Scholar 

  • Brown RGB (1991) Marine birds and climatic warming in the northwest Atlantic. In: Montevecchi WA, Gaston AJ (eds) Studies of high latitude seabirds 1: behavioural, energetic and oceanographic aspects of seabird feeding ecology. Canadian wildlife service occasional paper 68, Ottawa

    Google Scholar 

  • Buckley LB, Urban MC, Angilletta MJ, Crozier LG, Rissler LJ, Sears MW (2010) Can mechanism inform species’ distribution models? Ecol Lett 13:1041–1054

    Article  Google Scholar 

  • Burg TM, Croxall JP (2004) Global population structure and taxonomy of the wandering albatross species complex. Mol Ecol 13:2345–2355

    Article  CAS  Google Scholar 

  • Burthe S, Daunt F, Butler A, Elston DA, Frederiksen M, Johns D, Newell M, Thackeray SJ, Wanless S (2012) Phenological trends and trophic mismatch across multiple levels of a North Sea pelagic food web. Mar Ecol Prog Ser 454:119–133

    Article  Google Scholar 

  • Cairns DK (1987) Seabirds as indicators of marine food supplies. Biol Ocean 5:261–271

    Google Scholar 

  • Cairns DK (1992) Population regulation of seabird colonies. In: Power DM (ed) Current ornithology. Dordrecht, Kluwer Academic/Plenum, pp 37–62

    Google Scholar 

  • Chambers LE, Hughes L, Weston MA (2005) Climate change and its impact on Australia’s avifauna. Emu 105:1–20

    Article  Google Scholar 

  • Chapdelaine G, Laporte P, Nettleship DN (1987) Population, productivity and DDT contamination of Northern Gannets at Bonaventure Island, Quebec 1967–1984. Can J Zool 65:2922–2926

    Article  CAS  Google Scholar 

  • Charmantier A, McCleery RH, Cole LR, Perrins C, Kruuk LEB, Sheldon BC (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320:800–803

    Article  CAS  Google Scholar 

  • Ciannelli L, Hjermann D, Lehodey P, Ottersen G, Duffy-Anderson J, Stenseth NC (2005) Climate forcing, food web structure and community dynamics in pelagic marine ecosystems. In: Belgrano A (ed) Aquatic food webs: an ecosystem approach. Oxford University Press, Oxford, pp 143–169

    Google Scholar 

  • Clobert J, Danchin E, Dhondt AA, Nichols JD (2001) Dispersal. Oxford University Press, Oxford

    Google Scholar 

  • Cook JA, Brochmann C, Fedorov V, Talbot SL, Taylor EB, Väinölä R, Hoberg EP, Kholodova M, Magnusson KP (2012) Genetic perspectives on Arctic biodiversity. In Arctic biodiversity assessment. Conservation of Arctic fauna and flora Committee, Copenhagen (in press)

    Google Scholar 

  • Cotté C, Park YH, Guinet C, Bost CA (2007) Movements of foraging king penguins through marine mesoscale eddies. Proc Roy Soc Lond Ser B 274:2385–2391

    Article  Google Scholar 

  • Cotton PA (2003) Avian migration phenology and global climate change. Proc Natl Acad Sci U S A 100:12219–12222

    Article  CAS  Google Scholar 

  • Coulson JC (2002) Colonial breeding in seabirds. In: Schreiber EA and Burger J (eds) Biology of marine birds 2002. CRC Press, London, pp 87–114

    Google Scholar 

  • Crawford RJM, Goya E, Roux JP, Zavalaga CB (2006) Comparison of assemblages and some life-history traits of seabirds in the Humboldt and Benguela systems. Afr J Mar Sci 28:553–560

    Article  Google Scholar 

  • Crawford RJM, Sabarros PS, Fairweather T, Underhill LG, Wolfaardt AC (2008a) Implications for seabirds off South Africa of a long-term change in the distribution of sardine. Afr J Mar Sci 30:177–184

    Article  Google Scholar 

  • Crawford RJM, Tree AJ, Whittington PA, Visagie J, Upfold L, Roxburg KJ, Martin AP, Dyer BM (2008b) Recent distributional changes of seabirds in South Africa: is climate having an impact? Afr J Mar Sci 30:189–193

    Article  Google Scholar 

  • Crawford RJM, Altwegg R, Barham BJ, Barham PJ, Durant JM, Dyer BM, Geldenhuys D (2011) Collapse of South Africa’s penguins in the early 21st century. Afr J Mar Sci 33:139–156

    Article  Google Scholar 

  • Crick HQP (2004) The impact of climate change on birds. Ibis 146:48–56

    Article  Google Scholar 

  • Crick HQP, Dudley C, Glue DE, Thomson DL (1997) UK birds are laying eggs earlier. Nature 388:526

    Article  CAS  Google Scholar 

  • Croxall JP, Trathan PN, Murphy EJ (2002) Environmental change and Antarctic seabird populations. Science 297:1510–1514

    Article  CAS  Google Scholar 

  • Cury PM, Shin YJ, Planque B, Durant JM, Fromentin JM, Kramer-Schadt S, Stenseth NC, Travers M, Grimm V (2008) Ecosystem oceanography for global change in fisheries. Trends Ecol Evol 23:338–346

    Article  Google Scholar 

  • Cushing DH (1970) Marine ecology and fisheries. Cambridge University Press, Cambridge

    Google Scholar 

  • Cushing DH (1988) The provident sea. Cambridge University Press, Cambridge

    Google Scholar 

  • Dawson A (2008) Control of the annual cycle in birds: endocrine constraints and plasticity in response to ecological variability. Phil Trans R Soc B Biol Sci 363:1621–1633

    Article  Google Scholar 

  • Diamond AW, Devlin CM (2003) Seabirds as indicators of changes in marine ecosystems: Ecological monitoring on Machias Seal Island. Environ Monit Assess 88:153–181

    Article  CAS  Google Scholar 

  • Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11–37

    Article  Google Scholar 

  • Dugger KM, Ballard G, Ainley DG, Barton KJ (2006) Effects of flipper bands on foraging behaviour and survival of Adélie penguins (Pygoscelis adeliae). Auk 123:858–869

    Article  Google Scholar 

  • Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Fraser WR (2007) Marine pelagic ecosystems: the West Antarctic Peninsula. Phil Trans R Soc B 362:67–94.

    Article  Google Scholar 

  • Durant JM, Hjermann DØ, Ottersen G, Stenseth NC (2007) Climate and the match or mismatch between predator requirements and resource availability. Clim Res 33:271–283

    Article  Google Scholar 

  • Durant JM, Hjermann DØ, Frederiksen M, Charrassin JB, Le Maho Y, Sabarros PS, Crawford RJM, Stenseth NC (2009) Pros and cons of using seabirds as ecological indicators. Clim Res 39:115–129

    Article  Google Scholar 

  • Egevang C, Stenhouse IJ, Phillips RA, Petersen A, Fox JW, Silk JRD (2010) Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proc Natl Acad Sci U S A 107:2078–2081

    Article  CAS  Google Scholar 

  • Ellegren H, Sheldon BC (2008) Genetic basis of fitness differences in natural populations. Nature 452:169–175

    Article  CAS  Google Scholar 

  • Emslie SD, Fraser W, Smith RC, Walker W (1998) Abandoned penguin colonies and environmental change in the Palmer Station area, Anvers Island, Antarctic Peninsula. Antarct Sci 10:257–268

    Article  Google Scholar 

  • Forchhammer MC, Post E, Stenseth NC (2002) North Atlantic oscillation timing of long- and short-distance migration. J Anim Ecol 71:1002–1014

    Article  Google Scholar 

  • Fort J, Porter WP, Grémillet D (2009) Thermodynamic modeling predicts energetic bottleneck for seabirds wintering in the northwest Atlantic. J Exp Biol 212:2483–2490

    Article  Google Scholar 

  • Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107

    Article  Google Scholar 

  • Franklin IR, Frankham R (1998) How large must populations be to retain evolutionary potential? Anim Conserv 1:69–70

    Article  Google Scholar 

  • Fraser WR, Trivelpiece WZ, Ainley DC, Trivelpiece SG (1992) Increases in Antarctic penguin populations: reduced competition with whales or a loss of sea ice due to environmental warming? Polar Biol 11:525–531

    Article  Google Scholar 

  • Frederiksen M, Mavor RA, Wanless S (2007) Seabirds as environmental indicators: the advantages of combining data sets. Mar Ecol Prog Ser 352:205–211

    Article  Google Scholar 

  • Friesen VL, Burg TM, McCoy KD (2007) Mechanisms of population differentiation in seabirds. Mol Ecol 16:1765–1785

    Article  CAS  Google Scholar 

  • Furness RW, Camphuysen K (1997) Seabirds as monitors of the marine environment. ICES J Mar Sci 54:726–737

    Article  Google Scholar 

  • Furness RW, Greenwood JJD (1993) Birds as monitors of environmental change. Chapman & Hall, London

    Book  Google Scholar 

  • Gandon S, Michalakis Y (2001) Multiple causes of the evolution of dispersal. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, Oxford, pp 155–167

    Google Scholar 

  • Gaston AJ, Gilchrist HG, Mallory ML, Smith PA (2009) Changes in seasonal events, peak food availability, and consequent breeding adjustment in a marine bird: a case of progressive mismatching. Condor 111:111–119

    Article  Google Scholar 

  • Gauthier-Clerc M, Gendner JP, Ribic CA, Fraser WR, Woehler EJ, Descamps S, Gilly C, Le Bohec C, Le Maho Y (2004) Long-term effects of flipper bands on penguins. Proc R Soc Lond B 271:423–426

    Article  Google Scholar 

  • Gendner JP, Gauthier-Clerc M, Le Bohec C, Descamps S, Le Maho Y (2005) A new application for transponders in studying of penguins. J Field Ornithol 76:138–142

    Google Scholar 

  • Gienapp P, Teplitsky C, Alho J, Mills J, Merila J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178

    Article  CAS  Google Scholar 

  • Graversen RG, Mauritsen T, Tjernström M, Källen E, Svensson G (2008) Vertical structure of recent Arctic warming. Nature 451:53–56

    Article  CAS  Google Scholar 

  • Grémillet D, Boulinier T (2009) Spatial ecology and conservation of seabirds facing global climate change: a review. Mar Ecol Prog Ser 391:121–137

    Article  Google Scholar 

  • Grémillet D, Charmantier A (2010) Shifts in phenotypic plasticity constrain the value of seabirds as ecological indicators of marine ecosystems. Ecol Appl 20:1498–1503

    Article  Google Scholar 

  • Grémillet D, Welcker J, Karnovsky NJ, Walkusz W, Hall ME, Fort J, Brown ZW, Speakman JR, Harding AMA (2012) Little auks buffer the impact of current Arctic climate change. Mar Ecol Prog Ser 454:197–206

    Article  Google Scholar 

  • Gross L (2005) As the Antarctic ice pack recedes, a fragile ecosystem hangs in the balance. PLoS Biol 3(4):e127

    Article  CAS  Google Scholar 

  • Hamer KC, Furness RW, Caldow RWG (1991) The effects of changes in food availability on the breeding ecology of great skuas, Catharacta skua, in Shetland. J Zool 223:175–188

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci U S A 103:14288

    Article  CAS  Google Scholar 

  • Heslenfeld P, Enserink EL (2008) OSPAR ecological quality objectives: the utility of health indicators for the North Sea. ICES J Mar Sci 65:1392–1397

    Article  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523

    Article  CAS  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavore S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature. doi:10.1038/nature11118

    Google Scholar 

  • Huettmann F, Diamond AW (2006) Large-scale effects on the spatial distribution of seabirds in the Northwest Atlantic. Landsc Ecol 21:1089–1108

    Article  Google Scholar 

  • Hunt GL, Piatt JF, Erikstadt KE (1990) How do foraging seabirds sample their environment?. Acta XX Congressus Internationalis Ornithologici, Christchurch, pp 2272–2280

    Google Scholar 

  • IPCC (2007) Climate Change 2007: synthesis report. contribution of Working Groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change (eds Core Writing Team, Pachauri RK, Reisinger A)

    Google Scholar 

  • Jaeger A, Cherel Y (2011) Isotopic investigation of contemporary and historic changes in penguin trophic niches and carrying capacity of the Southern Indian Ocean. PLoS ONE 6(2):e16484

    Article  CAS  Google Scholar 

  • Jiguet F, Devictor V, Ottvall R, van Turnhout C, van der Jeugd H, Lindström Å (2010) Bird population trends are linearly affected by climate change along species thermal ranges. Proc R Soc Lond B 277:3601–3608

    Article  Google Scholar 

  • Jonzen N, Ergon T, Linden A, Stenseth NC (2007) Introduction to CR Special 17: bird migration and climate. Clim Res 35:1–3

    Article  Google Scholar 

  • Jouventin P, Weimerskirch H (1990) Satellite tracking of wandering albatrosses. Nature 343:746–748

    Article  Google Scholar 

  • Karnovsky N, Harding AMA, Walkusz W, Kwamniewski S, Goszczko I, Wiktor J Jr, Routti H, Bailey A, McFadden L, Brown Z, Beaugrand G, Grémillet D (2010) Foraging distributions of little auks (Alle alle) across the Greenland Sea: implications of present and future climate change. Mar Ecol Prog Ser 415:283–293

    Article  Google Scholar 

  • Kearney M, Shine R, Porter WP (2009) The potential for behavioral thermoregulation to buffer “coldblooded’’ animals against climate warming. Proc Natl Acad Sci U S A 106:3835–3840

    Article  CAS  Google Scholar 

  • Knight TM, Barfield M, Holt RD (2008) Evolutionary dynamics as a component of stage-structured matrix models: an example using Trillium grandiflorum. Am Nat 172(3):375–392

    Article  Google Scholar 

  • La Sorte FA, Jetz W (2010) Avian distributions under climate change: towards improved projections. J Exp Biol 213:862–869

    Article  Google Scholar 

  • Laikre L, Nilsson TR, Primmer CR, Ryman N, Allendorf FW (2009) Importance of genetics in the interpretation of favourable conservation status. Cons Biol 23:1378–1381

    Article  Google Scholar 

  • Lascelles BG, Langham GM, Ronconi RA, Reid JB (2012) From hotspots to site protection: identifying marine protected areas for seabirds around the globe. Biol Cons. doi:10.1016/j.biocon.2011.12.008

    Google Scholar 

  • Le Bohec C, Durant JM, Gauthier-Clerc M, Stenseth NC, Park YH, Pradel R, Grémillet D, Gendner JP, Le Maho Y (2008) King Penguin population threatened by Southern Ocean warming. Proc Natl Acad Sci U S A 105:2493–2497

    Article  Google Scholar 

  • Le Maho Y, Karmann H, Briot D, Handrich Y, Robin JP, Mioskowski E, Cherel Y, Farni J (1992) Stress in birds due to routine handling and a technique to avoid it. Am J Phys 263:775–781

    Google Scholar 

  • Le Maho Y, Gendner JP, Challet E, Bost CA, Gilles J, Verdon C, Plumeré C, Robin JP, Handrich Y (1993) Undisturbed breeding penguins as indicators of changes in marine resources. Mar Ecol Prog Ser 95:1–6

    Article  Google Scholar 

  • Le Maho Y, Saraux C, Durant J, Viblanc VA, Gauthier-Clerc M, Yoccoz N, Stenseth NC, Le Bohec C (2011) An ethical issue on biodiversity science: the monitoring of penguins with flipper-bands. Comp Rend Biol 334:378–384

    Article  Google Scholar 

  • Lebreton J, Burnham K, Clobert J, Anderson D (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118

    Article  Google Scholar 

  • Litzow MA, Ciannelli L (2007) Oscillating trophic control induces community reorganization in a marine ecosystem. Ecol Lett 10:1124–1134

    Article  Google Scholar 

  • Lynch M, Lande R (1998) The critical effective size for a genetically secure population. Anim Conserv 1:70–72

    Article  Google Scholar 

  • Matthiopoulos J, Harwood J, Thomas L (2005) Metapopulation consequences of site fidelity for colonially breeding mammals and birds. J Anim Ecol 74:716–727

    Article  Google Scholar 

  • McClintock J, Ducklow H, Fraser W (2008) Ecological Responses to climate change on the Antarctic Peninsula. Am Sci 96:302–310

    Article  Google Scholar 

  • Milot E, Weimerskirsch H, Bernatchez L (2008) The seabird paradox: dispersal, genetic structure and population dynamics in a highly mobile, but philopatric albatross species. Mol Ecol 17:1658–1673

    Article  CAS  Google Scholar 

  • Møller AP (2002) North Atlantic Oscillation (NAO) effects of climate on the relative importance of first and second clutches in a migratory passerine bird. J Anim Ecol 71:201–210

    Article  Google Scholar 

  • Møller AP, Rubolini D, Lehikoinen E (2008) Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc Natl Acad Sci U S A 105:16195–16200

    Article  Google Scholar 

  • Monaghan P (1996) Relevance of the behaviour of seabirds to the conservation of marine environments. Oikos 77:227–237

    Article  Google Scholar 

  • Monteiro LR, Furness RW (1995) Seabirds as monitors of mercury in the marine environment. Water Air Soil Pollut 80:851–870

    Article  CAS  Google Scholar 

  • Montevecchi WA (1993) Birds as indicators of change in marine prey stocks. In: Furness RW, Greenwood JJD (eds) Birds as monitors of environmental change. Chapman and Hall, London, pp 217–266

    Chapter  Google Scholar 

  • Montevecchi WA, Myers RA (1996) Dietary changes of seabirds indicate shifts in pelagic food webs. Sarsia 80:313–322

    Google Scholar 

  • Montevecchi WA, Myers RA (1997) Centurial and decadal oceanographic influences on changes in northern gannet populations and diets in the north-west Atlantic: implications for climate change. ICES J Mar Sci 54:608–614

    Article  Google Scholar 

  • Morin X, Thuiller W (2009) Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90:1301–1313

    Article  Google Scholar 

  • Nussey DH, Clutton-Brock T, Elston DA, Albon SD, Kruuk LEB (2005) Phenotypic plasticity in a maternal trait in red deer. J Anim Ecol 74:387–396

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  Google Scholar 

  • Parry ML et al (2007) Climate change 2007: impacts, adaptation and vulnerability. Summary for Policymakers (a report of Working Group II of the intergovernmental panel on climate change) and technical summary (a report accepted by Working Group II of the IPCC but not yet approved in detail: part of the Working Group II contribution to the fourth assessment report of the intergovernmental panel on climate change)

    Google Scholar 

  • Péron C, Weimerskirch H, Bost CA (2012) Projected poleward shift of king penguins’ (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean. Proc R Soc Lond B 279:2515–2523

    Article  Google Scholar 

  • Perrings C, Naeem S, Ahrestani FS, Bunker DE, Burkill P, Canziani G, Elmqvist T, Fuhrman JA, Jaksic FM, Kawabata Z, Kinzig A, Mace GM, Mooney H, Prieur-Richard AH, Tschirhart J, Weisser W (2011) Ecosystem services, targets, and indicators for the conservation and sustainable use of biodiversity. Front Ecol Environ 9:512–520

    Article  Google Scholar 

  • Piatt JP, Sydeman WJ, Wiese F (2007) Introduction: a modern role for seabirds as indicators. Mar Ecol Prog Ser 352:199–204

    Article  Google Scholar 

  • Pichegru L, Grémillet D, Crawford RJM, Ryan PG (2010) Marine no-take zone rapidly benefits endangered penguin. Biol Lett 6(4):498–501

    Article  CAS  Google Scholar 

  • Pierroti R, Annett CA (1990) Diet and reproductive output in seabirds. BioScience 40:568–574

    Article  Google Scholar 

  • Provencher JF, Gaston AJ, O’Hara PD, Gilchrist HG (2012) Seabird diet indicates changing Arctic marine communities in eastern Canada. Mar Ecol Prog Ser 454:171–182

    Article  Google Scholar 

  • Rayner MJ, Hauber ME, Steeves TE, Lawrence HA, Thompson DR, Sagar PM, Bury SJ, Landers TJ, Phillips RA, Ranjard L, Shaffer SA (2011) Contemporary and historical separation of transequatorial migration between genetically distinct seabird populations. Nat Commun 2:332

    Article  Google Scholar 

  • Ribic CA, Ainley DG, Ford RG, Fraser WR, Tynan CT, Woehler E (2011) Water masses, ocean fronts, and the structure of Antarctic seabird communities: putting the eastern Bellingshausen Sea in perspective, Deep-Sea Res 2. Top Stud Oceanogr 58:1695–1709

    Article  Google Scholar 

  • Roberge JM, Angelstam P (2004) Usefulness of the umbrella species concept as a conservation tool. Conserv Biol 18:76–85

    Article  Google Scholar 

  • Roeder AD, Marshall RK, Mitchelson AJ, Visagathilagar T, Ritchie PA, Love DR, Pakai TJ, McPartlan HC, Murray ND, Robinson NA (2001) Gene flow on the ice: genetic differentiation among Adélie penguin colonies around Antarctica. Mol Ecol 10:1645–1656

    Article  CAS  Google Scholar 

  • Ronconi RA, Lascelles BG, Langham GM, Reid JB, Oro D (2012) The role of seabirds in marine protected area identification, delineation, and monitoring: introduction and synthesis. Biol Conserv. doi:10.1016/j.biocon.2012.02.016

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  Google Scholar 

  • Ropert-Coudert Y, Kato A, Chiaradia A (2009) Impact of small-scale environmental perturbations on local marine food resources: a case study of a predator, the little penguin. Proc R Soc Lond Ser B 276:4105–4109

    Article  Google Scholar 

  • Ross KG (2001) Molecular ecology of social behaviour: analyses of breeding systems and genetic structure. Mol Ecol 10:265–284

    Article  CAS  Google Scholar 

  • Sæther BE, Tufto J, Engen S, Jerstad K, Røstad OW, Skåtan JE (2000) Population dynamical consequences of climate change for a small temperate songbird. Science 287:854–856

    Article  Google Scholar 

  • Saraux C, Le Bohec C, Durant JM, Viblanc VA, Gauthier-Clerc M, Beaune D, Park YH, Yoccoz NG, Stenseth NC, Le Maho Y (2011) Reliability of flipper-banded penguins as indicators of climate change. Nature 469:203–206

    Article  CAS  Google Scholar 

  • Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33

    Article  Google Scholar 

  • Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea ice cover. Science 315:1533–1536

    Article  CAS  Google Scholar 

  • Shultz MT, Piatt JF, Harding AMA, Kettle AB, Van Pelt TI (2009) Timing of breeding and reproductive performance in murres and kittiwakes reflect mismatched seasonal prey dynamics. Mar Ecol Prog Ser 393:247–258

    Article  Google Scholar 

  • Smith RC, Ainley D, Kaber K, Domack E, Emslie S, Fraser B, Kennett J, Leventer A, Mosley-Thompson E, Stammerjohn S, Vernet M (1999) Marine ecosystem sensitivity to historical climate change in the Antarctic Peninsula. BioScience 49:393–404

    Article  Google Scholar 

  • Spear LB, Ainley DG (1999) Migration routes of sooty shearwaters in the Pacific Ocean. Condor 101:205–218

    Article  Google Scholar 

  • Springer AM, Piatt JF, van Vliet G (1996) Sea birds as proxies of marine habitats and food webs in the western Aleutian arc. Fish Oceanogr 5(1):45–55

    Article  Google Scholar 

  • Stachowicz JJ, Bruno JF, Duffy JE (2007) Understanding the effects of marine biodiversity on communities and ecosystems. Annu Rev Ecol Evol Syst 38:739–766

    Article  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296

    Article  CAS  Google Scholar 

  • Stenseth NC, Ottersen G, Hurell JW, Belgrano A (2004) Marine ecosystems and climate variation. The North Atlantic: a comparative perspective. Oxford University Press, Oxford

    Google Scholar 

  • Taylor SA, Friesen VL (2012) Use of molecular genetics for understanding seabird evolution, ecology and conservation. Mar Ecol Prog Ser 451:285–304

    Article  Google Scholar 

  • Thackeray SJ, Sparks TH, Frederiksen M, Burthe S (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Change Biol 16:3304–3313

    Article  Google Scholar 

  • Thompson SA, Sydeman WJ, Santora JA, Morgan KH, Crawford W, Burrows MT (2012) Phenology of pelagic seabird abundance relative to marine climate change in the Alaska Gyre. Mar Ecol Prog Ser 454:159–170

    Article  Google Scholar 

  • Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. Proc R Soc Lond Ser B 272:2561–2569

    Article  Google Scholar 

  • Visser ME, Both C, Lambrechts MM (2004) Global climate change leads to mistimed avian reproduction. Adv Ecol Res 35:89–110

    Article  Google Scholar 

  • Voigt W, Perner J, Davis AJ, Eggers T, Schumacher J, Bährmann R, Fabian B, Heinrich W, Köhler G, Lichter D, Marstaller R, Sander FW (2003) Trophic levels are differentially sensitive to climate. Ecology 84:2444–2453

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  • Weimerskirch H, Stahl JC, Jouventin P (1992) The breeding biology and population dynamics of King Penguin Aptenodytes patagonicus on the Crozet Islands. Ibis 134:107–117

    Article  Google Scholar 

  • Weimerskirch H, Louzao M, de Grissac S, Delord K (2012) Changes in wind pattern alter albatross distribution and life-history traits. Science 335:211–214

    Article  CAS  Google Scholar 

  • Wilson RP, Vandenabeele SP (2012) Technological innovation in archival tags used in seabird research. Mar Ecol Prog Ser 451:245–262

    Article  Google Scholar 

  • Wilson PR, Ainley DG, Nur N, Jacobs SS, Barton KJ, Ballard G, Comiso JC (2001) Adélie penguin population change in the pacific sector of Antarctica: relation to sea-ice extent and the Antarctic Circumpolar Current. Mar Ecol Prog Ser 213:301–309

    Article  Google Scholar 

  • Wynn RB, Knefelkamp B (2004) Seabird distribution and oceanic upwelling off northwest Africa. British Birds 97:323–335

    Google Scholar 

Download references

Acknowledgments

We are very grateful to the Institut Polaire Français–Paul-Emile Victor (IPEV, Programme 137 ECOPHY-ANTAVIA) and the Terres Australes et Antarctiques Françaises (TAAF), the Centre National de la Recherche Scientifique (Programme Zone Atelier de Recherches sur l’Environnement Antarctique et Sub-Antarctique), the Agence Nationale de la Recherche (Programme ANR BLANC 1728-01-PICASO) and the Centre Scientifique de Monaco (LEA-647 BioSensib) for all of their support for long-term data collection and their help in developing Polar Life Observatories. Robot development was supported by the TOTAL corporate Foundation. We also wish to thank H. Ducklow, W. Fraser, J. McClintock and M. Pinkerton for figure permissions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Le Bohec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Le Bohec, C., Whittington, J.D., Le Maho, Y. (2013). Polar Monitoring: Seabirds as Sentinels of Marine Ecosystems. In: Verde, C., di Prisco, G. (eds) Adaptation and Evolution in Marine Environments, Volume 2. From Pole to Pole. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27349-0_11

Download citation

Publish with us

Policies and ethics