Skip to main content

\({\mathcal{H}}^{2}\)-Matrix Compression

  • Conference paper
  • First Online:
New Developments in the Visualization and Processing of Tensor Fields

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Representing a matrix in a hierarchical data structure instead of the standard two-dimensional array can offer significant advantages: submatrices can be compressed efficiently, different resolutions of a matrix can be handled easily, and even matrix operations like multiplication, factorization or inversion can be performed in the compressed representation, thus saving computation time and storage. \({\mathcal{H}}^{2}\)-matrices use a subdivision of the matrix into a hierarchy of submatrices in combination with a hierarchical basis, similar to a wavelet basis, to handle \(n \times n\) matrices in \(\mathcal{O}(nk)\) units of storage, where k is a parameter controlling the compression error. This chapters gives a short introduction into the basic concepts of the \({\mathcal{H}}^{2}\)-matrix method, particularly concerning the compression of arbitrary matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)

    Google Scholar 

  2. Bebendorf, M.: Why finite element discretizations can be factored by triangular hierarchical matrices. SIAM J. Numer. Anal. 45(4), 1472–1494 (2007)

    Google Scholar 

  3. Bebendorf, M., Hackbusch, W.: Existence of \(\mathcal{H}\)-matrix approximants to the inverse FE-matrix of elliptic operators with L -coefficients. Numer. Math. 95, 1–28 (2003)

    Google Scholar 

  4. Bebendorf, M., Grzhibovskis, R.: Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation. Math. Meth. Appl. Sci. 29, 1721–1747 (2006)

    Google Scholar 

  5. Bendoraityte, J., Börm, S.: Distributed \({\mathcal{H}}^{2}\)-matrices for non-local operators. Comput. Vis. Sci. 11, 237–249 (2008)

    Google Scholar 

  6. Beylkin, G., Coifman, R., Rokhlin, V.: The fast wavelet transform and numerical algorithms. Commun. Pure Appl. Math. 44, 141–183 (1991)

    Google Scholar 

  7. Börm, S.: \({\mathcal{H}}^{2}\)-matrix arithmetics in linear complexity. Computing 77(1), 1–28 (2006)

    Google Scholar 

  8. Börm, S.: Adaptive variable-rank approximation of dense matrices. SIAM J. Sci. Comput. 30(1), 148–168 (2007)

    Google Scholar 

  9. Börm, S.: Data-sparse approximation of non-local operators by \({\mathcal{H}}^{2}\)-matrices. Linear Algebra Appl. 422, 380–403 (2007)

    Google Scholar 

  10. Börm, S.: Construction of data-sparse \({\mathcal{H}}^{2}\)-matrices by hierarchical compression. SIAM J. Sci. Comput. 31(3), 1820–1839 (2009)

    Google Scholar 

  11. Börm, S.: Approximation of solution operators of elliptic partial differential equations by \(\mathcal{H}\)- and \({\mathcal{H}}^{2}\)-matrices. Numer. Math. 115(2), 165–193 (2010)

    Google Scholar 

  12. Börm, S.: Efficient Numerical Methods for Non-local Operators: \({\mathcal{H}}^{2}\)-Matrix Compression, Algorithms and Analysis. EMS Tracts in Mathematics, vol. 14. EMS, Zürich (2010)

    Google Scholar 

  13. Börm, S., Hackbusch, W.: Data-sparse approximation by adaptive \({\mathcal{H}}^{2}\)-matrices. Computing 69, 1–35 (2002)

    Google Scholar 

  14. Börm, S., Grasedyck, L.: Low-rank approximation of integral operators by interpolation. Computing 72, 325–332 (2004)

    Google Scholar 

  15. Börm, S., Grasedyck, L.: Hybrid cross approximation of integral operators. Numer. Math. 101, 221–249 (2005)

    Google Scholar 

  16. Börm, S., Grasedyck, L., Hackbusch, W.: Introduction to hierarchical matrices with applications. Eng. Anal. Bound. Elem. 27, 405–422 (2003)

    Google Scholar 

  17. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Google Scholar 

  18. Ewald, P.P.: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik 369(3), 253–287 (1920)

    Google Scholar 

  19. Grasedyck, L.: Theorie und Anwendungen Hierarchischer Matrizen. Doctoral thesis, Universität Kiel (2001)

    Google Scholar 

  20. Grasedyck, L.: Adaptive recompression of \(\mathcal{H}\)-matrices for BEM. Computing 74(3), 205–223 (2004)

    Google Scholar 

  21. Grasedyck, L.: Existence of a low-rank or \(\mathcal{H}\)-matrix approximant to the solution of a Sylvester equation. Numer. Linear Algebra Appl. 11, 371–389 (2004)

    Google Scholar 

  22. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of \(\mathcal{H}\)-matrices. Computing 70, 295–334 (2003)

    Google Scholar 

  23. Grasedyck, L., LeBorne, S.: \(\mathcal{H}\)-matrix preconditioners in convection-dominated problems. SIAM J. Math. Anal. 27(4), 1172–1183 (2006)

    Google Scholar 

  24. Grasedyck, L., Hackbusch, W., Khoromskij, B.N.: Solution of large scale algebraic matrix Riccati equations by use of hierarchical matrices. Computing 70, 121–165 (2003)

    Google Scholar 

  25. Grasedyck, L., Hackbusch, W., LeBorne, S.: Adaptive geometrically balanced clustering of \(\mathcal{H}\)-matrices. Computing 73, 1–23 (2004)

    Google Scholar 

  26. Grasedyck, L., Kriemann, R., LeBorne, S.: Domain decomposition based \(\mathcal{H}\)-LU preconditioning. Numer. Math. 112(4), 565–600 (2009)

    Google Scholar 

  27. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)

    Google Scholar 

  28. Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. In: Acta Numerica 1997, pp. 229–269. Cambridge University Press, Cambridge/New York (1997)

    Google Scholar 

  29. Hackbusch, W.: A sparse matrix arithmetic based on \(\mathcal{H}\)-matrices. Part I: introduction to \(\mathcal{H}\)-matrices. Computing 62, 89–108 (1999)

    Google Scholar 

  30. Hackbusch, W.: Hierarchische Matrizen: Algorithmen und Analysis. Springer, Berlin/ Heidelberg (2009)

    Google Scholar 

  31. Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463–491 (1989)

    Google Scholar 

  32. Hackbusch, W., Khoromskij, B.N.: A sparse matrix arithmetic based on \(\mathcal{H}\)-matrices. Part II: application to multi-dimensional problems. Computing 64, 21–47 (2000)

    Google Scholar 

  33. Hackbusch, W., Khoromskij, B.N., Sauter, S.A.: On \({\mathcal{H}}^{2}\)-matrices. In: Bungartz, H., Hoppe, R., Zenger, C. (eds.) Lectures on Applied Mathematics, pp. 9–29. Springer, Berlin (2000)

    Google Scholar 

  34. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60, 187–207 (1985)

    Google Scholar 

  35. Sauter, S.A.: Variable order panel clustering. Computing 64, 223–261 (2000)

    Google Scholar 

  36. Tausch, J., White, J.: Multiscale bases for the sparse representation of boundary integral operators on complex geometries. SIAM J. Sci. Comput. 24(5), 1610–1629 (2003)

    Google Scholar 

Download references

Acknowledgements

Most of the research results described in this chapter are the result of several years of work as a researcher at the Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany, and I particularly owe a debt of gratitude to Wolfgang Hackbusch and Lars Grasedyck for many insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Börm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this paper

Cite this paper

Börm, S. (2012). \({\mathcal{H}}^{2}\)-Matrix Compression. In: Laidlaw, D., Vilanova, A. (eds) New Developments in the Visualization and Processing of Tensor Fields. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27343-8_18

Download citation

Publish with us

Policies and ethics