Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 369))

Abstract

Due to the obligatory intracellular lifestyle of viruses, cell culture systems for efficient viral propagation are crucial to obtain a detailed understanding of the virus–host cell interaction. For hepatitis C virus (HCV) the development of permissive and authentic culture models continues to be a challenging task. The first efforts to culture HCV had limited success and range back to before the virus was molecularly cloned in 1989. Since then several major breakthroughs have gradually overcome limitations in culturing the virus and sequentially permitted analysis of viral RNA replication, cell entry, and ultimately the complete replication cycle in cultured cells in 2005. Until today, basic and applied HCV research greatly benefit from these tremendous efforts which spurred multiple complementary cell-based model systems for distinct steps of the HCV replication cycle. When used in combination they now permit deep insights into the fascinating biology of HCV and its interplay with the host cell. In fact, drug development has been much facilitated and our understanding of the molecular determinants of HCV replication has grown in parallel to these advances. Building on this groundwork and further refining our cellular models to better mimic the architecture, polarization and differentiation of natural hepatocytes should reveal novel unique aspects of HCV replication. Ultimately, models to culture primary HCV isolates across all genotypes may teach us important new lessons about viral functional adaptations that have evolved in exchange with its human host and that may explain the variable natural course of hepatitis C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMEC:

Brain microvascular endothelial cells

CNS:

Central nervous system

Con1:

Consensus genome 1

DAA:

Direct acting antiviral

DC-SIGN:

Dendritic cell-specific intracellular adhesion molecule-3-grabbing non-integrin

EGFR:

Epidermal growth factor receptor

EMCV:

Encephalomyocarditis virus

EphA2:

Ephrin receptor A2

GFP:

Green fluorescent protein

HCV:

Hepatitis C virus

HCVTCP:

Hepatitis C virus trans-complemented particles

HBV:

Hepatitis B virus

HIV:

Human immunodeficiency virus

iPSC:

Induced pluripotent stem cells

IRES:

Internal ribosomal entry site

JFH1:

Japanese fulminant hepatitis

LDL-R:

Low-density lipoprotein receptor

MEF:

Mouse embryonic fibroblasts

MPCC:

Micropattern co-cultures

mL:

Milliliter

MLV:

Murine leukemia virus

NPC1L1:

Niemann-Pick C1-like cholesterol adsorption receptor

PBMC:

Peripheral blood mononuclear cells

PHH:

Primary human hepatocytes

REM:

Replication enhancing mutations

RIG-I:

Retinoic acid-inducible gene I

SEAP:

Secreted embryonic alkaline phosphatase

siRNA:

small interfering RNAs

TCID50:

Tissue culture infectious dose 50

VSV:

Vesicular stomatitis virus

References

  • Abe K, Ikeda M et al (2007) Cell culture-adaptive NS3 mutations required for the robust replication of genome-length hepatitis C virus RNA. Virus Res 125(1):88–97

    CAS  PubMed  Google Scholar 

  • Adair R, Patel AH et al (2009) Expression of hepatitis C virus (HCV) structural proteins in trans facilitates encapsidation and transmission of HCV subgenomic RNA. J Gen Virol 90(Pt 4):833–842

    CAS  PubMed  Google Scholar 

  • Aizaki H, Morikawa K et al (2008) Critical role of virion-associated cholesterol and sphingolipid in hepatitis C virus infection. J Virol 82(12):5715–5724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akazawa D, Date T et al (2007) CD81 expression is important for the permissiveness of Huh7 cell clones for heterogeneous hepatitis C virus infection. J Virol 81(10):5036–5045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali S, Pellerin C et al (2004) Hepatitis C virus subgenomic replicons in the human embryonic kidney 293 cell line. J Virol 78(1):491–501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Appel N, Herian U et al (2005) Efficient rescue of hepatitis C virus RNA replication by trans-complementation with nonstructural protein 5A. J Virol 79(2):896–909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Appel N, Zayas M et al (2008) Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog 4(3):e1000035

    PubMed  PubMed Central  Google Scholar 

  • Baldick CJ, Wichroski MJ et al (2010) A novel small molecule inhibitor of hepatitis C virus entry. PLoS Pathog 6(9):e1001086

    PubMed  PubMed Central  Google Scholar 

  • Bartenschlager R (2006) Hepatitis C virus molecular clones: from cDNA to infectious virus particles in cell culture. Curr Opin Microbiol 9(4):416–422

    CAS  PubMed  Google Scholar 

  • Bartenschlager R, Lohmann V (2000) Replication of hepatitis C virus. J Gen Virol 81(Pt 7):1631–1648

    CAS  PubMed  Google Scholar 

  • Bartosch B, Dubuisson J et al (2003) Infectious hepatitis C virus pseudo-particles containing functional E1–E2 envelope protein complexes. J Exp Med 197(5):633–642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bauhofer O, Ruggieri A et al. (2012) Persistence of HCV in quiescent hepatic cells under conditions of an interferon-induced antiviral response. Gastroenterology 143(2):429–38e8

    Google Scholar 

  • Baumert TF, Ito S et al (1998) Hepatitis C virus structural proteins assemble into viruslike particles in insect cells. J Virol 72(5):3827–3836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Binder M, Kochs G et al (2007) Hepatitis C virus escape from the interferon regulatory factor 3 pathway by a passive and active evasion strategy. Hepatology 46(5):1365–1374

    CAS  PubMed  Google Scholar 

  • Bitzegeio J, Bankwitz D et al (2010) Adaptation of hepatitis C virus to mouse CD81 permits infection of mouse cells in the absence of human entry factors. PLoS Pathog 6:e1000978

    PubMed  PubMed Central  Google Scholar 

  • Blanchard E, Belouzard S et al (2006) Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol 80(14):6964–6972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blight KJ, Kolykhalov AA et al (2000) Efficient initiation of HCV RNA replication in cell culture. Science 290(5498):1972–1974

    CAS  PubMed  Google Scholar 

  • Blight KJ, McKeating JA et al (2002) Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76(24):13001–13014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blight KJ, McKeating JA et al (2003) Efficient replication of hepatitis C virus genotype 1a RNAs in cell culture. J Virol 77(5):3181–3190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brimacombe CL, Grove J et al (2011) Neutralizing antibody-resistant hepatitis C virus cell-to-cell transmission. J Virol 85(1):596–605

    CAS  PubMed  Google Scholar 

  • Buck M (2008) Direct infection and replication of naturally occurring hepatitis C virus genotypes 1, 2, 3 and 4 in normal human hepatocyte cultures. PLoS One 3(7):e2660

    PubMed  PubMed Central  Google Scholar 

  • Bukh J, Pietschmann T et al (2002) Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees. Proc Natl Acad Sci USA 99(22):14416–14421

    CAS  PubMed  Google Scholar 

  • Bukh J, Meuleman P et al (2010) Challenge pools of hepatitis C virus genotypes 1–6 prototype strains: replication fitness and pathogenicity in chimpanzees and human liver-chimeric mouse models. J Infect Dis 201(9):1381–1389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bungyoku Y, Shoji I et al (2009) Efficient production of infectious hepatitis C virus with adaptive mutations in cultured hepatoma cells. J Gen Virol 90(Pt 7):1681–1691

    CAS  PubMed  Google Scholar 

  • Buonocore L, Blight KJ et al (2002) Characterization of vesicular stomatitis virus recombinants that express and incorporate high levels of hepatitis C virus glycoproteins. J Virol 76(14):6865–6872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burgel B, Friesland M et al (2011) Hepatitis C virus enters human peripheral neuroblastoma cells - evidence for extra-hepatic cells sustaining hepatitis C virus penetration. J Viral Hepat 18(8):562–570

    CAS  PubMed  Google Scholar 

  • Cai Z, Zhang C et al (2005) Robust production of infectious hepatitis C virus (HCV) from stably HCV cDNA-transfected human hepatoma cells. J Virol 79(22):13963–13973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calland N, Albecka A et al (2012) (−)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology 55(3):720–729

    CAS  PubMed  Google Scholar 

  • Carloni G, Iacovacci S et al (1993) Susceptibility of human liver cell cultures to hepatitis C virus infection. Arch Virol Suppl 8:31–39

    CAS  PubMed  Google Scholar 

  • Catanese MT, Ansuini H et al (2010) Role of scavenger receptor class B type I in hepatitis C virus entry: kinetics and molecular determinants. J Virol 84(1):34–43

    CAS  PubMed  Google Scholar 

  • Chan K, Cheng G et al (2012) An adaptive mutation in NS2 is essential for efficient production of infectious 1b/2a chimeric hepatitis C virus in cell culture. Virology 422(2):224–234

    CAS  PubMed  Google Scholar 

  • Chang KS, Cai Z et al (2006) Replication of hepatitis C virus (HCV) RNA in mouse embryonic fibroblasts: protein kinase R (PKR)-dependent and PKR-independent mechanisms for controlling HCV RNA replication and mediating interferon activities. J Virol 80(15):7364–7374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chockalingam K, Simeon RL et al (2010) A cell protection screen reveals potent inhibitors of multiple stages of the hepatitis C virus life cycle. Proc Natl Acad Sci USA 107(8):3764–3769

    CAS  PubMed  Google Scholar 

  • Ciesek S, von Hahn T et al (2011a) The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology 54(6):1947–1955

    CAS  PubMed  Google Scholar 

  • Ciesek S, Westhaus S et al (2011b) Impact of intra- and inter-species variation of occludin on its function as coreceptor for authentic hepatitis C virus particles. J Virol 85(15):7613–7621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coller KE, Berger KL et al (2009) RNA interference and single particle tracking analysis of hepatitis C virus endocytosis. PLoS Pathog 5(12):e1000702

    PubMed  PubMed Central  Google Scholar 

  • Date T, Morikawa K et al. (2012) Replication and infectivity of a novel genotype 1b hepatitis C virus clone. Microbiol Immunol 56(5):308–317

    CAS  PubMed  Google Scholar 

  • Date T, Kato T et al (2004) Genotype 2a hepatitis C virus subgenomic replicon can replicate in HepG2 and IMY-N9 cells. J Biol Chem 279(21):22371–22376

    CAS  PubMed  Google Scholar 

  • Decaens C, Durand M et al (2008) Which in vitro models could be best used to study hepatocyte polarity? Biol Cell 100(7):387–398

    CAS  PubMed  Google Scholar 

  • Delgrange D, Pillez A et al (2007) Robust production of infectious viral particles in Huh-7 cells by introducing mutations in hepatitis C virus structural proteins. J Gen Virol 88(Pt 9):2495–2503

    CAS  PubMed  Google Scholar 

  • Dreux M, Dao Thi VL et al (2009) Receptor complementation and mutagenesis reveal SR-BI as an essential HCV entry factor and functionally imply its intra- and extra-cellular domains. PLoS Pathog 5(2):e1000310

    PubMed  PubMed Central  Google Scholar 

  • Evans MJ, Rice CM et al (2004) Phosphorylation of hepatitis C virus nonstructural protein 5A modulates its protein interactions and viral RNA replication. Proc Natl Acad Sci USA 101(35):13038–13043

    CAS  PubMed  Google Scholar 

  • Evans MJ, von Hahn T et al (2007) Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446(7137):801–805

    CAS  PubMed  Google Scholar 

  • Fishman SL, Murray JM et al (2008) Molecular and bioinformatic evidence of hepatitis C virus evolution in brain. J Infect Dis 197(4):597–607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher NF, Wilson GK et al. (2012) Hepatitis C virus infects the endothelial cells of the blood-brain barrier. Gastroenterology 142(3):634–643 e6

    Google Scholar 

  • Fletcher NF, Yang JP et al (2010) Hepatitis C virus infection of neuroepithelioma cell lines. Gastroenterology 139(4):1365–1374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flint M, Thomas JM et al (1999) Functional analysis of cell surface-expressed hepatitis C virus E2 glycoprotein. J Virol 73(8):6782–6790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flint M, Dubuisson J et al (2000) Functional characterization of intracellular and secreted forms of a truncated hepatitis C virus E2 glycoprotein. J Virol 74(2):702–709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flint M, von Hahn T et al (2006) Diverse CD81 proteins support hepatitis C virus infection. J Virol 80(22):11331–11342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier C, Sureau C et al (1998) In vitro infection of adult normal human hepatocytes in primary culture by hepatitis C virus. J Gen Virol 79(Pt 10):2367–2374

    CAS  PubMed  Google Scholar 

  • Frese M, Schwarzle V et al (2002) Interferon-gamma inhibits replication of subgenomic and genomic hepatitis C virus RNAs. Hepatology 35(3):694–703

    CAS  PubMed  Google Scholar 

  • Friebe P, Boudet J et al (2005) Kissing-loop interaction in the 3′ end of the hepatitis C virus genome essential for RNA replication. J Virol 79(1):380–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gottwein JM, Scheel TK et al (2007) Robust hepatitis C genotype 3a cell culture releasing adapted intergenotypic 3a/2a (S52/JFH1) viruses. Gastroenterology 133(5):1614–1626

    CAS  PubMed  Google Scholar 

  • Gottwein JM, Scheel TK et al (2009) Development and characterization of hepatitis C virus genotype 1–7 cell culture systems: role of CD81 and scavenger receptor class B type I and effect of antiviral drugs. Hepatology 49(2):364–377

    CAS  PubMed  Google Scholar 

  • Gottwein JM, Jensen TB et al (2011a) Development and application of hepatitis C reporter viruses with genotype 1–7 core-nonstructural protein 2 (NS2) expressing fluorescent proteins or luciferase in modified JFH1 NS5A. J Virol 85(17):8913–8928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gottwein JM, Scheel TK et al (2011b) Differential efficacy of protease inhibitors against HCV genotypes 2a, 3a, 5a, and 6a NS3/4A protease recombinant viruses. Gastroenterology 141(3):1067–1079

    CAS  PubMed  Google Scholar 

  • Grobler JA, Markel EJ et al (2003) Identification of a key determinant of hepatitis C virus cell culture adaptation in domain II of NS3 helicase. J Biol Chem 278(19):16741–16746

    CAS  PubMed  Google Scholar 

  • Grove J, Nielsen S et al (2008) Identification of a residue in hepatitis C virus E2 glycoprotein that determines scavenger receptor BI and CD81 receptor dependency and sensitivity to neutralizing antibodies. J Virol 82(24):12020–12029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu B, Gates AT et al (2003) Replication studies using genotype 1a subgenomic hepatitis C virus replicons. J Virol 77(9):5352–5359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JT, Bichko VV et al (2001) Effect of alpha interferon on the hepatitis C virus replicon. J Virol 75(18):8516–8523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haid S, Pietschmann T et al (2009) Low pH-dependent hepatitis C virus membrane fusion depends on E2 integrity, target lipid composition, and density of virus particles. J Biol Chem 284(26):17657–17667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haid S, Windisch MP et al (2010) Mouse-specific residues of claudin-1 limit hepatitis C virus genotype 2a infection in a human hepatocyte cell line. J Virol 84(2):964–975 Recently, claudin-1 (CLDN1) was identified as a host protein essential

    CAS  PubMed  Google Scholar 

  • Hsu M, Zhang J et al (2003) Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci USA 100(12):7271–7276

    CAS  PubMed  Google Scholar 

  • Iacovacci S, Sargiacomo M et al (1993) Replication and multiplication of hepatitis C virus genome in human foetal liver cells. Res Virol 144(4):275–279

    CAS  PubMed  Google Scholar 

  • Ikeda M, Yi M et al (2002) Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J Virol 76(6):2997–3006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda M, Abe K et al (2005) Efficient replication of a full-length hepatitis C virus genome, strain O, in cell culture, and development of a luciferase reporter system. Biochem Biophys Res Commun 329(4):1350–1359

    CAS  PubMed  Google Scholar 

  • Iro M, Witteveldt J et al (2009) A reporter cell line for rapid and sensitive evaluation of hepatitis C virus infectivity and replication. Antiviral Res 83(2):148–155

    CAS  PubMed  Google Scholar 

  • Ishii K, Murakami K et al (2008) Trans-encapsidation of hepatitis C virus subgenomic replicon RNA with viral structure proteins. Biochem Biophys Res Commun 371(3):446–450

    CAS  PubMed  Google Scholar 

  • Jensen TB, Gottwein JM et al (2008) Highly efficient JFH1-based cell-culture system for hepatitis C virus genotype 5a: failure of homologous neutralizing-antibody treatment to control infection. J Infect Dis 198(12):1756–1765

    PubMed  Google Scholar 

  • Jiang J, Luo G (2012) Cell culture adaptive mutations promote viral protein–protein interactions and morphogenesis of infectious Hepatitis C Virus. J Virol 86(17):8987–8997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones CT, Murray CL et al (2007) Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J Virol 81(16):8374–8383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DM, Patel AH et al (2009) The hepatitis C virus NS4B protein can trans-complement viral RNA replication and modulates production of infectious virus. J Virol 83(5):2163–2177

    CAS  PubMed  Google Scholar 

  • Jones CT, Catanese MT et al (2010) Real-time imaging of hepatitis C virus infection using a fluorescent cell-based reporter system. Nat Biotechnol 28(2):167–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JI, Kim JP et al (2009) Cell culture-adaptive mutations in the NS5B gene of hepatitis C virus with delayed replication and reduced cytotoxicity. Virus Res 144(1–2):107–116

    CAS  PubMed  Google Scholar 

  • Kato T, Furusaka A et al (2001) Sequence analysis of hepatitis C virus isolated from a fulminant hepatitis patient. J Med Virol 64(3):334–339

    CAS  PubMed  Google Scholar 

  • Kato N, Sugiyama K et al (2003a) Establishment of a hepatitis C virus subgenomic replicon derived from human hepatocytes infected in vitro. Biochem Biophys Res Commun 306(3):756–766

    CAS  PubMed  Google Scholar 

  • Kato T, Date T et al (2003b) Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology 125(6):1808–1817

    CAS  PubMed  Google Scholar 

  • Kato T, Date T et al (2005) Nonhepatic cell lines HeLa and 293 support efficient replication of the hepatitis C virus genotype 2a subgenomic replicon. J Virol 79(1):592–596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul A, Worez I et al (2007) Cell culture adaptation of hepatitis C virus and in vivo viability of an adapted variant. J Virol 81(23):13168–13179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul A, Stauffer S et al (2009) Essential role of cyclophilin A for hepatitis C virus replication and virus production and possible link to polyprotein cleavage kinetics. PLoS Pathog 5(8):e1000546

    PubMed  PubMed Central  Google Scholar 

  • Khromykh AA, Westaway EG (1997) Subgenomic replicons of the flavivirus Kunjin: construction and applications. J Virol 71(2):1497–1505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kishine H, Sugiyama K et al (2002) Subgenomic replicon derived from a cell line infected with the hepatitis C virus. Biochem Biophys Res Commun 293(3):993–999

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Bennett MC et al (2006) Functional analysis of hepatitis C virus envelope proteins, using a cell–cell fusion assay. J Virol 80(4):1817–1825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolykhalov AA, Agapov EV et al (1997) Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277(5325):570–574

    CAS  PubMed  Google Scholar 

  • Koutsoudakis G, Kaul A et al (2006) Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses. J Virol 80(11):5308–5320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koutsoudakis G, Herrmann E et al (2007) The level of CD81 cell surface expression is a key determinant for productive entry of hepatitis C virus into host cells. J Virol 81(2):588–598

    CAS  PubMed  Google Scholar 

  • Koutsoudakis G, Perez-del-Pulgar S et al (2011) Cell culture replication of a genotype 1b hepatitis C virus isolate cloned from a patient who underwent liver transplantation. PLoS ONE 6(8):e23587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krey T, d’Alayer J et al (2010) The disulfide bonds in glycoprotein E2 of hepatitis C virus reveal the tertiary organization of the molecule. PLoS Pathog 6(2):e1000762

    PubMed  PubMed Central  Google Scholar 

  • Krieger N, Lohmann V et al (2001) Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J Virol 75(10):4614–4624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lagaye S, Shen H et al (2012) Efficient replication of primary or culture hepatitis C virus isolates in human liver slices: a relevant ex vivo model of liver infection. Hepatology 56(3):861–872

    CAS  PubMed  Google Scholar 

  • Lagging LM, Meyer K et al (1998) Functional role of hepatitis C virus chimeric glycoproteins in the infectivity of pseudotyped virus. J Virol 72(5):3539–3546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambot M, Fretier S et al (2002) Reconstitution of hepatitis C virus envelope glycoproteins into liposomes as a surrogate model to study virus attachment. J Biol Chem 277(23):20625–20630

    CAS  PubMed  Google Scholar 

  • Lanford RE, Guerra B et al (2003) Antiviral effect and virus-host interactions in response to alpha interferon, gamma interferon, poly(i)-poly(c), tumor necrosis factor alpha, and ribavirin in hepatitis C virus subgenomic replicons. J Virol 77(2):1092–1104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanford RE, Guerra B et al (2006) Hepatitis C virus genotype 1b chimeric replicon containing genotype 3 NS5A domain. Virology 355(2):192–202

    CAS  PubMed  Google Scholar 

  • Lavillette D, Bartosch B et al (2006) Hepatitis C virus glycoproteins mediate low pH-dependent membrane fusion with liposomes. J Biol Chem 281(7):3909–3917

    CAS  PubMed  Google Scholar 

  • Lavillette D, Pecheur EI et al (2007) Characterization of fusion determinants points to the involvement of three discrete regions of both E1 and E2 glycoproteins in the membrane fusion process of hepatitis C virus. J Virol 81(16):8752–8765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazaro CA, Chang M et al (2007) Hepatitis C virus replication in transfected and serum-infected cultured human fetal hepatocytes. Am J Pathol 170(2):478–489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang C, Rieder E et al (2005) Replication of a novel subgenomic HCV genotype 1a replicon expressing a puromycin resistance gene in Huh-7 cells. Virology 333(1):41–53

    CAS  PubMed  Google Scholar 

  • Lin LT, Noyce RS et al (2010) Replication of subgenomic hepatitis C virus replicons in mouse fibroblasts is facilitated by deletion of interferon regulatory factor 3 and expression of liver-specific microRNA 122. J Virol 84(18):9170–9180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindenbach BD (2010) New cell culture models of hepatitis C virus entry, replication, and virus production. Gastroenterology 139(4):1090–1093

    PubMed  Google Scholar 

  • Lindenbach BD, Evans MJ et al (2005) Complete replication of hepatitis C virus in cell culture. Science 309(5734):623–626

    CAS  PubMed  Google Scholar 

  • Lindenbach BD, Meuleman P et al (2006) Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proc Natl Acad Sci USA 103(10):3805–3809

    CAS  PubMed  Google Scholar 

  • Lohmann V, Korner F et al (1999) Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285(5424):110–113

    CAS  PubMed  Google Scholar 

  • Lohmann V, Korner F et al (2001) Mutations in hepatitis C virus RNAs conferring cell culture adaptation. J Virol 75(3):1437–1449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lohmann V, Hoffmann S et al (2003) Viral and cellular determinants of hepatitis C virus RNA replication in cell culture. J Virol 77(5):3007–3019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long G, Hiet MS et al (2011) Mouse hepatic cells support assembly of infectious hepatitis C virus particles. Gastroenterology 141(3):1057–1066

    CAS  PubMed  Google Scholar 

  • Lundstrom K (2004) Gene therapy applications of viral vectors. Technol Cancer Res Treat 3(5):467–477

    CAS  PubMed  Google Scholar 

  • Ma Y, Yates J et al (2008) NS3 helicase domains involved in infectious intracellular hepatitis C virus particle assembly. J Virol 82(15):7624–7639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maekawa S, Enomoto N et al (2004) Introduction of NS5A mutations enables subgenomic HCV replicon derived from chimpanzee-infectious HC-J4 isolate to replicate efficiently in Huh-7 cells. J Viral Hepat 11(5):394–403

    CAS  PubMed  Google Scholar 

  • Matsuura Y, Tani H et al (2001) Characterization of pseudotype VSV possessing HCV envelope proteins. Virology 286(2):263–275

    CAS  PubMed  Google Scholar 

  • McCaffrey K, Gouklani H et al (2011) The variable regions of hepatitis C virus glycoprotein E2 have an essential structural role in glycoprotein assembly and virion infectivity. J Gen Virol 92(Pt 1):112–121

    CAS  PubMed  Google Scholar 

  • McMullan LK, Grakoui A et al (2007) Evidence for a functional RNA element in the hepatitis C virus core gene. Proc Natl Acad Sci USA 104(8):2879–2884

    CAS  PubMed  Google Scholar 

  • Mee CJ, Harris HJ et al (2009) Polarization restricts hepatitis C virus entry into HepG2 hepatoma cells. J Virol 83(12):6211–6221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meertens L, Bertaux C et al (2006) Hepatitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin-coated vesicles. J Virol 80(23):11571–11578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michalak JP, Wychowski C et al (1997) Characterization of truncated forms of hepatitis C virus glycoproteins. J Gen Virol 78(Pt 9):2299–2306

    CAS  PubMed  Google Scholar 

  • Mittelholzer C, Moser C et al (1997) Generation of cytopathogenic subgenomic RNA of classical swine fever virus in persistently infected porcine cell lines. Virus Res 51(2):125–137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto M, Kato T et al (2006) Comparison between subgenomic replicons of hepatitis C virus genotypes 2a (JFH-1) and 1b (Con1 NK5.1). Intervirology 49(1–2):37–43

    CAS  PubMed  Google Scholar 

  • Molina S, Castet V et al (2008) Serum-derived hepatitis C virus infection of primary human hepatocytes is tetraspanin CD81 dependent. J Virol 82(1):569–574

    CAS  PubMed  Google Scholar 

  • Molina-Jimenez F, Benedicto I et al (2012) Matrigel-embedded 3D culture of Huh-7 cells as a hepatocyte-like polarized system to study hepatitis C virus cycle. Virology 425(1):31–39

    CAS  PubMed  Google Scholar 

  • Morgello S (2005) The nervous system and hepatitis C virus. Semin Liver Dis 25(1):118–121

    PubMed  Google Scholar 

  • Mori K, Abe K et al (2008) New efficient replication system with hepatitis C virus genome derived from a patient with acute hepatitis C. Biochem Biophys Res Commun 371(1):104–109

    CAS  PubMed  Google Scholar 

  • Murray EM, Grobler JA et al (2003) Persistent replication of hepatitis C virus replicons expressing the beta-lactamase reporter in subpopulations of highly permissive Huh7 cells. J Virol 77(5):2928–2935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murray CL, Jones CT et al (2008a) Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 6(9):699–708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murray J, Fishman SL et al (2008b) Clinicopathologic correlates of hepatitis C virus in brain: a pilot study. J Neurovirol 14(1):17–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Narbus CM, Israelow B et al (2011) HepG2 cells expressing microRNA miR-122 support the entire hepatitis C virus life cycle. J Virol 85(22):12087–12092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ndongo-Thiam N, Berthillon P et al (2011) Long-term propagation of serum hepatitis C virus (HCV) with production of enveloped HCV particles in human HepaRG hepatocytes. Hepatology 54(2):406–417

    CAS  PubMed  Google Scholar 

  • Owsianka A, Tarr AW et al (2005) Monoclonal antibody AP33 defines a broadly neutralizing epitope on the hepatitis C virus E2 envelope glycoprotein. J Virol 79(17):11095–11104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pacini L, Graziani R et al (2009) Naturally occurring hepatitis C virus subgenomic deletion mutants replicate efficiently in Huh-7 cells and are trans-packaged in vitro to generate infectious defective particles. J Virol 83(18):9079–9093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parent R, Marion MJ et al (2004) Origin and characterization of a human bipotent liver progenitor cell line. Gastroenterology 126(4):1147–1156

    PubMed  Google Scholar 

  • Peng B, Xu MYS, Han B, Lee Y-J, Chan K, Tian Y, Pagratis N, Mo H, McHutchison J, Delaney W, Cheng G (2012) Development and molecular characterization of a robust genotype 4 Hepatitis C virus subgenomic replicon. J Hepatol 56(Suppl 2):S322

    Google Scholar 

  • Phan T, Beran RK et al (2009) Hepatitis C virus NS2 protein contributes to virus particle assembly via opposing epistatic interactions with the E1–E2 glycoprotein and NS3-NS4A enzyme complexes. J Virol 83(17):8379–8395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pietschmann T, Lohmann V et al (2001) Characterization of cell lines carrying self-replicating hepatitis C virus RNAs. J Virol 75(3):1252–1264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pietschmann T, Lohmann V et al (2002) Persistent and transient replication of full-length hepatitis C virus genomes in cell culture. J Virol 76(8):4008–4021

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pietschmann T, Kaul A et al (2006) Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci USA 103(19):7408–7413

    CAS  PubMed  Google Scholar 

  • Pietschmann T, Zayas M et al (2009) Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing mutations. PLoS Pathog 5(6):e1000475

    PubMed  PubMed Central  Google Scholar 

  • Pileri P, Uematsu Y et al (1998) Binding of hepatitis C virus to CD81. Science 282(5390):938–941

    CAS  PubMed  Google Scholar 

  • Ploss A, Evans MJ (2012) Hepatitis C virus host cell entry. Curr Opin Virol 2(1):14–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ploss A, Khetani SR et al (2010) Persistent hepatitis C virus infection in microscale primary human hepatocyte cultures. Proc Natl Acad Sci USA 107(7):3141–3145

    CAS  PubMed  Google Scholar 

  • Podevin P, Carpentier A et al (2010) Production of infectious hepatitis C virus in primary cultures of human adult hepatocytes. Gastroenterology 139(4):1355–1364

    CAS  PubMed  Google Scholar 

  • Radkowski M, Wilkinson J et al (2002) Search for hepatitis C virus negative-strand RNA sequences and analysis of viral sequences in the central nervous system: evidence of replication. J Virol 76(2):600–608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reiss S, Rebhan I et al (2011) Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell Host Microbe 9(1):32–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roelandt P, Obeid S et al. (2012) Human pluripotent stem cell derived hepatocytes support complete replication of hepatitis C virus. J Hepatol 57(2):246–251

    CAS  PubMed  Google Scholar 

  • Rumin S, Berthillon P et al (1999) Dynamic analysis of hepatitis C virus replication and quasispecies selection in long-term cultures of adult human hepatocytes infected in vitro. J Gen Virol 80(Pt 11):3007–3018

    CAS  PubMed  Google Scholar 

  • Russell RS, Meunier JC et al (2008) Advantages of a single-cycle production assay to study cell culture-adaptive mutations of hepatitis C virus. Proc Natl Acad Sci USA 105(11):4370–4375

    CAS  PubMed  Google Scholar 

  • Sainz B Jr, Chisari FV (2006) Production of infectious hepatitis C virus by well-differentiated, growth-arrested human hepatoma-derived cells. J Virol 80(20):10253–10257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sainz B Jr, TenCate V et al (2009) Three-dimensional Huh7 cell culture system for the study of Hepatitis C virus infection. Virol J 6:103

    PubMed  PubMed Central  Google Scholar 

  • Sainz B Jr, Barretto N et al (2012) Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med 18(2):281–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarrazin C, Mihm U et al (2005) Clinical significance of in vitro replication-enhancing mutations of the hepatitis C virus (HCV) replicon in patients with chronic HCV infection. J Infect Dis 192(10):1710–1719

    CAS  PubMed  Google Scholar 

  • Scarselli E, Ansuini H et al (2002) The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 21(19):5017–5025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaller T, Appel N et al (2007) Analysis of hepatitis C virus superinfection exclusion by using novel fluorochrome gene-tagged viral genomes. J Virol 81(9):4591–4603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheel TK, Gottwein JM et al (2008) Development of JFH1-based cell culture systems for hepatitis C virus genotype 4a and evidence for cross-genotype neutralization. Proc Natl Acad Sci USA 105(3):997–1002

    CAS  PubMed  Google Scholar 

  • Scheel TK, Gottwein JM et al (2011a) Efficient culture adaptation of hepatitis C virus recombinants with genotype-specific core-NS2 by using previously identified mutations. J Virol 85(6):2891–2906

    CAS  PubMed  Google Scholar 

  • Scheel TK, Gottwein JM et al (2011b) Recombinant HCV variants with NS5A from genotypes 1–7 have different sensitivities to an NS5A inhibitor but not interferon-alpha. Gastroenterology 140(3):1032–1042

    CAS  PubMed  Google Scholar 

  • Schwartz RE, Trehan K et al (2012) Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc Natl Acad Sci USA 109(7):2544–2548

    CAS  PubMed  Google Scholar 

  • Schwarz AK, Grove J et al (2009) Hepatoma cell density promotes claudin-1 and scavenger receptor BI expression and hepatitis C virus internalization. J Virol 83(23):12407–12414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sieczkarski SB, Whittaker GR (2002) Dissecting virus entry via endocytosis. J Gen Virol 83(Pt 7):1535–1545

    CAS  PubMed  Google Scholar 

  • Spaete RR, Alexander D et al (1992) Characterization of the hepatitis C virus E2/NS1 gene product expressed in mammalian cells. Virology 188(2):819–830

    CAS  PubMed  Google Scholar 

  • Steinmann E, Penin F et al (2007) Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions. PLoS Pathog 3(7):e103

    PubMed  PubMed Central  Google Scholar 

  • Steinmann E, Brohm C et al (2008) Efficient trans-encapsidation of hepatitis C virus RNAs into infectious virus-like particles. J Virol 82(14):7034–7046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sumpter R Jr, Loo YM et al (2005) Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol 79(5):2689–2699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tarr AW, Owsianka AM et al (2007) Cloning, expression, and functional analysis of patient-derived hepatitis C virus glycoproteins. Methods Mol Biol 379:177–197

    CAS  PubMed  Google Scholar 

  • Timpe JM, Stamataki Z et al (2008) Hepatitis C virus cell–cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology 47(1):17–24

    Google Scholar 

  • Triyatni M, Saunier B et al (2002) Interaction of hepatitis C virus-like particles and cells: a model system for studying viral binding and entry. J Virol 76(18):9335–9344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tscherne DM, Jones CT et al (2006) Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. J Virol 80(4):1734–1741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uprichard SL, Chung J et al (2006) Replication of a hepatitis C virus replicon clone in mouse cells. Virol J 3:89

    PubMed  PubMed Central  Google Scholar 

  • Vieyres G, Pietschmann T (2012) Entry and replication of recombinant hepatitis C viruses in cell culture. Methods pii: S1046-2023(12)00245-9 [Epub ahead of print]

    Google Scholar 

  • Vieyres G, Angus AG et al (2009) Rapid synchronization of hepatitis C virus infection by magnetic adsorption. J Virol Methods 157(1):69–79

    CAS  PubMed  Google Scholar 

  • Wakita T, Pietschmann T et al (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11(7):791–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weissenborn K, Tryc AB et al (2009) Hepatitis C virus infection and the brain. Metab Brain Dis 24(1):197–210

    PubMed  Google Scholar 

  • Wellnitz S, Klumpp B et al (2002) Binding of hepatitis C virus-like particles derived from infectious clone H77C to defined human cell lines. J Virol 76(3):1181–1193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whidby J, Mateu G et al (2009) Blocking hepatitis C virus infection with recombinant form of envelope protein 2 ectodomain. J Virol 83(21):11078–11089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson J, Radkowski M et al (2009) Hepatitis C virus neuroinvasion: identification of infected cells. J Virol 83(3):1312–1319

    CAS  PubMed  Google Scholar 

  • Windisch MP, Frese M et al (2005) Dissecting the interferon-induced inhibition of hepatitis C virus replication by using a novel host cell line. J Virol 79(21):13778–13793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Witteveldt J, Evans MJ et al (2009) CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells. J Gen Virol 90(Pt 1):48–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Robotham JM et al (2012) Productive Hepatitis C Virus Infection of Stem Cell-Derived Hepatocytes Reveals a Critical Transition to Viral Permissiveness during Differentiation. PLoS Pathog 8(4):e1002617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagi M, Purcell RH et al (1997) Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee. Proc Natl Acad Sci USA 94(16):8738–8743

    CAS  PubMed  Google Scholar 

  • Yi M, Lemon SM (2004) Adaptive mutations producing efficient replication of genotype 1a hepatitis C virus RNA in normal Huh7 cells. J Virol 78(15):7904–7915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi M, Lemon SM (2009) Genotype 1a HCV (H77S) infection system. Methods Mol Biol 510:337–346

    CAS  PubMed  Google Scholar 

  • Yi M, Bodola F et al (2002) Subgenomic hepatitis C virus replicons inducing expression of a secreted enzymatic reporter protein. Virology 304(2):197–210

    CAS  PubMed  Google Scholar 

  • Yi M, Villanueva RA et al (2006) Production of infectious genotype 1a hepatitis C virus (Hutchinson strain) in cultured human hepatoma cells. Proc Natl Acad Sci USA 103(7):2310–2315

    CAS  PubMed  Google Scholar 

  • Yi M, Ma Y et al (2007) Compensatory mutations in E1, p7, NS2, and NS3 enhance yields of cell culture-infectious intergenotypic chimeric hepatitis C virus. J Virol 81(2):629–638

    CAS  PubMed  Google Scholar 

  • Zhong J, Gastaminza P et al (2005) Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci USA 102(26):9294–9299

    CAS  PubMed  Google Scholar 

  • Zhong J, Gastaminza P et al (2006) Persistent hepatitis C virus infection in vitro: coevolution of virus and host. J Virol 80(22):11082–11093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Guo JT et al (2003) Replication of hepatitis C virus subgenomes in nonhepatic epithelial and mouse hepatoma cells. J Virol 77(17):9204–9210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Dong H et al (2007) Hepatitis C virus triggers apoptosis of a newly developed hepatoma cell line through antiviral defense system. Gastroenterology 133(5):1649–1659

    CAS  PubMed  Google Scholar 

  • Zignego AL, Giannini C et al (2007) Hepatitis C virus lymphotropism: lessons from a decade of studies. Dig Liver Dis 39(Suppl 1):S38–S45

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Gisa Gerold for critical reading of the manuscript and Dorothea Bankwitz for helping with the preparation of the figures. Work in the authors’ laboratory is supported by grants from the European Research Council (VIRAFRONT), the Deutsche Forschungsgemeinschaft (DFG) (SFB 900, Teilprojekt A6; PI 734/1-1 and PI734/2-1), and by grants from the Initiative and Networking Fund of the Helmholtz Association SO-024 and HA-202 to T.P. E.S. is supported by DFG (STE 1954/1-1).

Financial and competing interest disclosure The authors declare no conflict of interest. T.P. has received consulting fees from Biotest AG and from Janssen Global Services, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Pietschmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steinmann, E., Pietschmann, T. (2013). Cell Culture Systems for Hepatitis C Virus. In: Bartenschlager, R. (eds) Hepatitis C Virus: From Molecular Virology to Antiviral Therapy. Current Topics in Microbiology and Immunology, vol 369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27340-7_2

Download citation

Publish with us

Policies and ethics