Skip to main content

Normal Modes, Symmetries and Stability

  • Chapter
  • First Online:
Complex Hamiltonian Dynamics

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 10))

  • 1580 Accesses

Abstract

The present Chapter studies nonlinear normal modes (NNMs) of coupled oscillators from an altogether different perspective. Focusing entirely on periodic boundary conditions and using the Fermi Pasta Ulam β (FPU − β) and FPU − α models as examples, we demonstrate the importance of discrete symmetries in locating and analyzing exactly a class of NNMs called one-dimensional “bushes”, depending on a single periodic function \(\hat{q}(t)\). Using group theoretical arguments one can similarly identify n-dimensional bushes described by \(\hat{{q}}_{1}(t),\ldots,\hat{{q}}_{n}(t)\), which represent quasiperiodic orbits characterized by n incommensurate frequencies. Expressing these solutions as linear combinations of single bushes, it is possible to simplify the linearized equations about them and study their stability analytically. We emphasize that these results are not limited to monoatomic particle chains, but can apply to more complicated molecular structures in two and three spatial dimensions, of interest to solid state physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Abdullaev, O. Bang, M.P. Sørensen (eds.), Nonlinearity and Disorder: Theory and Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 45 (Springer, Heidelberg, 2002)

    Google Scholar 

  2. M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Note Series, vol. 149 (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  3. M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981)

    MATH  Google Scholar 

  4. M.J. Ablowitz, B. Prinari, A.D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  5. E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979)

    ADS  Google Scholar 

  6. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)

    Google Scholar 

  7. O. Afsar, U. Tirnakli, Probability densities for the sums of iterates of the sine-circle map in the vicinity of the quasiperiodic edge of chaos. Phys. Rev. E 82, 046210 (2010)

    ADS  Google Scholar 

  8. Y. Aizawa, Symbolic dynamics approach to the two-dimensional chaos in area-preserving maps. Prog. Theor. Phys. 71, 1419–1421 (1984)

    MathSciNet  ADS  MATH  Google Scholar 

  9. D. Alonso, R. Artuso, G. Casati, I. Guarneri, Heat conductivity and dynamical instability. Phys. Rev. Lett. 82, 1859–1862 (1999)

    ADS  Google Scholar 

  10. P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)

    ADS  Google Scholar 

  11. D.V. Anosov, Geodesic flows on a compact Riemann manifold of negative curvature. Trudy Mat. Inst. Steklov 90, 3–210 (1967). English translation, Proc. Steklov Math. Inst. 90, 3–210 (1967)

    Google Scholar 

  12. D.V. Anosov, Y.G. Sinai, Some smooth Ergodic systems. Russ. Math. Surv. 22(5), 103–167 (1967)

    MathSciNet  Google Scholar 

  13. Ch. Antonopoulos, T. Bountis, Stability of simple periodic orbits and chaos in a Fermi-Pasta-Ulam lattice. Phys. Rev. E 73, 056206 (2006)

    MathSciNet  ADS  Google Scholar 

  14. Ch. Antonopoulos, T. Bountis, Detecting order and chaos by the linear dependence index (LDI) method. ROMAI J. 2, 1–13 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Ch. Antonopoulos, H. Christodoulidi, Weak chaos detection in the Fermi-Pasta-Ulam-α system using q-Gaussian statistics. Int. J. Bifurc. Chaos 21, 2285–2296 (2011)

    Google Scholar 

  16. Ch. Antonopoulos, T.C. Bountis, Ch. Skokos, Chaotic dynamics of N-degree of freedom Hamiltonian systems. Int. J. Bifurc. Chaos 16, 1777–1793 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Ch. Antonopoulos, V. Basios, T. Bountis, Weak chaos and the “melting transition” in a confined microplasma system. Phys. Rev. E. 81, 016211 (2010)

    ADS  Google Scholar 

  18. Ch. Antonopoulos, T. Bountis, V. Basios, Quasi-stationary chaotic states of multidimensional Hamiltonian systems. Phys. A 390, 3290–3307 (2011)

    MathSciNet  Google Scholar 

  19. V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1989)

    Google Scholar 

  20. V.I. Arnold, A. Avez, Problèmes Ergodiques de la Mécanique Classique (Gauthier-Villars, Paris, 1967 / Benjamin, New York, 1968)

    Google Scholar 

  21. S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization. Phys. D 103, 201–250 (1997)

    MathSciNet  MATH  Google Scholar 

  22. F. Baldovin, E. Brigatti, C. Tsallis, Quasi-stationary states in low-dimensional Hamiltonian systems. Phys. Lett. A 320, 254–260 (2004)

    MathSciNet  ADS  MATH  Google Scholar 

  23. F. Baldovin, L.G. Moyano, A.P. Majtey, A. Robledo, C. Tsallis, Ubiquity of metastable-to-stable crossover in weakly chaotic dynamical systems. Phys. A 340, 205–218 (2004)

    MathSciNet  Google Scholar 

  24. D. Bambusi, A. Ponno, On metastability in FPU. Commun. Math. Phys. 264, 539–561 (2006)

    MathSciNet  ADS  MATH  Google Scholar 

  25. D. Bambusi, A. Ponno, Resonance, Metastability and Blow Up in FPU. Lecture Notes in Physics, vol. 728 (Springer, New York/Berlin, 2008), pp. 191–205

    Google Scholar 

  26. R. Barrio, Sensitivity tools vs. Poincaré sections. Chaos Soliton Fract. 25, 711–726 (2005)

    MathSciNet  ADS  MATH  Google Scholar 

  27. R. Barrio, Painting chaos: a gallery of sensitivity plots of classical problems. Int. J. Bifurc. Chaos 16, 2777–2798 (2006)

    MathSciNet  MATH  Google Scholar 

  28. R. Barrio, W. Borczyk, S. Breiter, Spurious structures in chaos indicators maps. Chaos Soliton Fract. 40, 1697–1714 (2009)

    MathSciNet  ADS  MATH  Google Scholar 

  29. C. Beck, Brownian motion from deterministic dynamics. Phys. A 169, 324–336 (1990)

    MathSciNet  Google Scholar 

  30. G. Benettin, A. Ponno, Time-scales to equipartition in the Fermi-Pasta-Ulam problem: finite size effects and thermodynamic limit. J. Stat. Phys. 144, 793–812 (2011)

    MathSciNet  ADS  MATH  Google Scholar 

  31. G. Benettin, L. Galgani, A. Giorgilli, J.-M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory. Meccanica 15, 9–20 (1980)

    Google Scholar 

  32. G. Benettin, L. Galgani, A. Giorgilli, J.-M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 2: Numerical application. Meccanica 15, 21–30 (1980)

    Google Scholar 

  33. G. Benettin, L. Galgani, A. Giorgilli, A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems. Celest. Mech. 37, 1–25 (1985)

    MathSciNet  ADS  MATH  Google Scholar 

  34. G. Benettin, A. Carati, L. Galgani, A. Giorgilli, The Fermi-Pasta-Ulam problem and the metastability perspective. Lecture Notes in Physics, vol. 728 (Springer, New York/Berlin, 2008), pp. 151–189

    Google Scholar 

  35. G. Benettin, R. Livi, A. Ponno, The Fermi-Pasta-Ulam problem: scaling laws vs. initial conditions. J. Stat. Phys. 135, 873–893 (2009)

    Google Scholar 

  36. D. Benisti, D.F. Escande, Nonstandard diffusion properties of the standard map. Phys. Rev. Lett. 80, 4871–4874 (1998)

    MathSciNet  ADS  MATH  Google Scholar 

  37. L. Berchialla, A. Giorgilli, S. Paleari, Exponentially long times to equipartition in the thermodynamic limit. Phys. Lett. A, 321, 167–172 (2004)

    ADS  MATH  Google Scholar 

  38. L. Berchialla, L. Galgani, A. Giorgilli, Localization of energy in FPU chains. Discret. Contin. Dyn. Syst. 11, 855–866 (2004)

    MathSciNet  MATH  Google Scholar 

  39. J.M. Bergamin, Numerical approximation of breathers in lattices with nearest-neighbor interactions, Phys. Rev. E 67, 026703 (2003)

    MathSciNet  ADS  Google Scholar 

  40. J.M. Bergamin, Localization in nonlinear lattices and homoclinic dynamics. Ph.D. Thesis, University of Patras, 2003

    Google Scholar 

  41. J.M. Bergamin, T. Bountis, C. Jung, A method for locating symmetric homoclinic orbits using symbolic dynamics. J. Phys. A-Math. Gen. 33, 8059–8070 (2000)

    MathSciNet  ADS  MATH  Google Scholar 

  42. J.M. Bergamin, T. Bountis, M.N. Vrahatis, Homoclinic orbits of invertible maps. Nonlinearity 15, 1603–1619 (2002)

    MathSciNet  MATH  Google Scholar 

  43. G.P. Berman, F.M. Izrailev, The Fermi-Pasta-Ulam problem: fifty years of progress. Chaos 15, 015104 (2005)

    MathSciNet  ADS  Google Scholar 

  44. P. Billingsley, Convergence of Probability Measures (Wiley, New York, 1968)

    MATH  Google Scholar 

  45. J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht,  P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Direct observation of Anderson localization of matter-waves in a controlled disorder. Nature 453, 891–894 (2008)

    ADS  Google Scholar 

  46. G. Birkhoff, G.-C. Rota, Ordinary Differential Equations (Wiley, New York, 1978)

    MATH  Google Scholar 

  47. J.D. Bodyfelt, T.V. Laptyeva, Ch. Skokos, D.O. Krimer, S. Flach, Nonlinear waves in disordered chains: probing the limits of chaos and spreading. Phys. Rev. E 84, 016205 (2011)

    ADS  Google Scholar 

  48. J.D. Bodyfelt, T.V. Laptyeva, G. Gligoric, D.O. Krimer, Ch. Skokos, S. Flach, Wave interactions in localizing media – a coin with many faces. Int. J. Bifurc. Chaos 21, 2107–2124 (2011)

    MATH  Google Scholar 

  49. J. Boreux, T. Carletti, Ch. Skokos, M. Vittot, Hamiltonian control used to improve the beam stability in particle accelerator models. Commun. Nonlinear Sci. Numer. Simul. (2011) 17, 1725–1738 (2012)

    Google Scholar 

  50. J. Boreux, T. Carletti, Ch. Skokos, Y. Papaphilippou, M. Vittot, Efficient control of accelerator maps. Int. J. Bifurc. Chaos (2012, In Press) E-print arXiv:1103.5631

    Google Scholar 

  51. T. Bountis, Investigating non-integrability and Chaos in complex time. Phys. D 86, 256–267 (1995)

    MathSciNet  MATH  Google Scholar 

  52. T. Bountis, Stability of motion: From Lyapunov to the dynamics N-degree of freedom Hamiltonian systems. Nonlinear Phenomena and Complex Systems 9, 209–239 (2006)

    MathSciNet  Google Scholar 

  53. T. Bountis, J.M. Bergamin, Discrete Breathers in Nonlinear Lattices: A Review and Recent Results. Lecture Notes in Physics, vol. 626 (Springer, New York/Berlin, 2003)

    Google Scholar 

  54. T. Bountis, M. Kollmann, Diffusion rates in a 4-dimensional mapping model of accelerator dynamics. Phys. D 71, 122–131 (1994)

    MATH  Google Scholar 

  55. T. Bountis, K.E. Papadakis, The stability of vertical motion in the N-body circular Sitnikov problem. Celest. Mech. Dyn. Astron. 104, 205–225 (2009)

    MathSciNet  ADS  MATH  Google Scholar 

  56. T. Bountis, H. Segur, in Logarithmic Singularities and Chaotic Behavior in Hamiltonian Systems, ed. by M. Tabor, Y. Treves. A.I.P. Conference Proceedings, vol. 88, 279–292 (A.I.P., New York, 1982)

    Google Scholar 

  57. T. Bountis, Ch. Skokos, Application of the SALI chaos detection method to accelerator mappings. Nucl. Instrum. Methods A 561, 173–179 (2006)

    ADS  Google Scholar 

  58. T. Bountis, Ch. Skokos, Space charges can significantly affect the dynamics of accelerator maps. Phys. Lett. A 358, 126–133 (2006)

    ADS  MATH  Google Scholar 

  59. T. Bountis, S. Tompaidis, Strong and weak instabilities in a 4-D mapping model of accelerator dynamics, in Nonlinear Problems in Future Particle Accelerators, ed. by W. Scandale, G. Turchetti (World Scientific, Singapore, 1991), pp. 112–127

    Google Scholar 

  60. T. Bountis, H. Segur, F. Vivaldi, Integrable Hamiltonian systems and the Painlevé property. Phys. Rev. A 25, 1257–1264 (1982)

    MathSciNet  ADS  Google Scholar 

  61. T. Bountis, H.W. Capel, M. Kollmann, J.C. Ross, J.M. Bergamin, J.P. van der Weele, Multibreathers and homoclinic orbits in one-dimensional nonlinear lattices. Phys. Lett. A 268, 50–60 (2000)

    MathSciNet  ADS  MATH  Google Scholar 

  62. T. Bountis, J.M. Bergamin, V. Basios, Stabilization of discrete breathers using continuous feedback control. Phys. Lett. A 295, 115–120 (2002)

    ADS  Google Scholar 

  63. T. Bountis, T. Manos, H. Christodoulidi, Application of the GALI method to localization dynamics in nonlinear systems. J. Comput. Appl. Math. 227, 17–26 (2009)

    MathSciNet  ADS  MATH  Google Scholar 

  64. T. Bountis, G. Chechin, V. Sakhnenko, Discrete symmetries and stability in Hamiltonian dynamics. Int. J. Bifurc. Chaos 21, 1539–1582 (2011)

    MathSciNet  MATH  Google Scholar 

  65. V.A. Brazhnyi, V.V. Konotop, Theory of nonlinear matter waves in optical lattices. Mod. Phys. Lett. B 18, 627–651 (2004)

    ADS  Google Scholar 

  66. N. Budinsky, T. Bountis, Stability of nonlinear modes and chaotic properties of 1D Fermi-Pasta-Ulam lattices. Phys. D 8, 445–452 (1983)

    MathSciNet  MATH  Google Scholar 

  67. A. Cafarella, M. Leo, R.A. Leo, Numerical analysis of the one-mode solutions in the Fermi-Pasta-Ulam system. Phys. Rev. E 69, 046604 (2004)

    ADS  Google Scholar 

  68. P. Calabrese, A. Gambassi, Slow dynamics in critical ferromagnetic vector models relaxing from a magnetized initial state. J. Stat. Mech.-Theory Exp. 2007, P01001 (2007)

    Google Scholar 

  69. F. Calogero, D. Gomez-Ullate, P.M. Santini, M. Sommacal, On the transition from regular to irregular motions, explained as travel on Riemann surfaces. J. Phys. A 38, 8873–8896 (2005)

    MathSciNet  ADS  MATH  Google Scholar 

  70. F. Calogero, D. Gomez-Ullate, P.M. Santini, M. Sommacal, Towards a theory of chaos explained as travel on Riemann surfaces. J. Phys. A 42, 015205 (2009)

    MathSciNet  ADS  Google Scholar 

  71. D.K. Campbell, P. Rosenau, G.M. Zaslavsky (eds.), The Fermi-Pasta-Ulam problem: the first 50 Years. Chaos, Focus Issue 15, 015101 (2005)

    Google Scholar 

  72. R. Capuzzo-Dolcetta, L. Leccese, D. Merritt, A. Vicari, Self-consistent models of cuspy triaxial galaxies with dark matter haloes. Astrophys. J. 666, 165–180 (2007)

    ADS  Google Scholar 

  73. J.R. Cary, D.F. Escande, A.D. Verga, Nonquasilinear diffusion far from the chaotic threshold. Phys. Rev. Lett. 65, 3132–3135 (1990)

    ADS  Google Scholar 

  74. G. Casati, B. Li, Heat conduction in one dimensional systems: Fourier law, chaos, and heat control, in Nonlinear Dynamics and Fundamental Interactions. NATO Science Series, Springer, New York/Berlin, vol. 213, Part 1, 1–16 (2006)

    Google Scholar 

  75. G. Casati, T. Prosen, Mixing property of triangular billiards. Phys. Rev. Lett. 83, 4729–4732 (1999)

    ADS  Google Scholar 

  76. G. Casati, J. Ford, F. Vivaldi, W.M. Visscher, One-dimensional classical many-body system having a normal thermal conductivity. Phys. Rev. Lett. 52, 1861–1864 (1984)

    ADS  Google Scholar 

  77. A. Celikoglu, U. Tirnakli, S.M. Duarte Queirós, Analysis of return distributions in the coherent noise model. Phys. Rev. E 82, 021124 (2010)

    ADS  Google Scholar 

  78. J. Chabé, G. Lemarié, B. Grémaud, D. Delande, P. Szriftgiser, J.-C. Garreau, Experimental observation of the Anderson metal-insulator transition with atomic matter waves. Phys. Rev. Lett. 101, 255702 (2008)

    ADS  Google Scholar 

  79. C.W. Chang, D. Okawa, A. Majumdar, A. Zettl, Solid-state thermal rectifier. Science 314, 1121 (2006)

    Google Scholar 

  80. G.M. Chechin, Computers and group-theoretical methods for studying structural phase transition. Comput. Math. Appl. 17, 255–278 (1989)

    MathSciNet  MATH  Google Scholar 

  81. G.M. Chechin, V.P. Sakhnenko, Interactions between normal modes in nonlinear dynamical systems with discrete symmetry. Exact results. Phys. D 117, 43–76 (1998)

    MathSciNet  MATH  Google Scholar 

  82. G.M. Chechin, K.G. Zhukov, Stability analysis of dynamical regimes in nonlinear systems with discrete symmetries. Phys. Rev. E 73, 036216 (2006)

    MathSciNet  ADS  Google Scholar 

  83. G.M. Chechin, T.I. Ivanova, V.P. Sakhnenko, Complete order parameter condensate of low-symmetry phases upon structural phase transitions. Phys. Status Solidi B 152, 431–446 (1989)

    ADS  Google Scholar 

  84. G.M. Chechin, E.A. Ipatova, V.P. Sakhnenko, Peculiarities of the low-symmetry phase structure near the phase-transition point. Acta Crystallogr. A 49, 824–831 (1993)

    Google Scholar 

  85. G.M. Chechin, N.V. Novikova, A.A. Abramenko, Bushes of vibrational modes for Fermi-Pasta-Ulam chains. Phys. D 166, 208–238 (2002)

    MathSciNet  MATH  Google Scholar 

  86. G.M. Chechin, A.V. Gnezdilov, M.Yu. Zekhtser, Existence and stability of bushes of vibrational modes for octahedral mechanical systems with Lennard-Jones potential. Int. J. Nonlinear Mech. 38, 1451–1472 (2003) *********

    Google Scholar 

  87. G.M. Chechin, D.S. Ryabov, K.G. Zhukov, Stability of low-dimensional bushes of vibrational modes in the Fermi-Pasta-Ulam chains. Phys. D 203, 121–166 (2005)

    MathSciNet  MATH  Google Scholar 

  88. B.V. Chirikov, A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263–379 (1979)

    MathSciNet  ADS  Google Scholar 

  89. B.V. Chirikov, D.L. Shepelyansky, Correlation properties of dynamical chaos in Hamiltonian systems. Phys. D 13, 395–400 (1984)

    MathSciNet  MATH  Google Scholar 

  90. S.-N. Chow, M. Yamashita, Geometry of the Melnikov vector, in Nonlinear Equations in Applied Sciences, ed. by W.F. Ames, C. Rogers (Academic Press, San Diego, 1991), pp. 79–148

    Google Scholar 

  91. D.N. Christodoulides, F. Lederer, Y. Silberberg, Discretizing light behavious in linear and nonlinear waveguide lattices. Nature 424, 817 (2003)

    ADS  Google Scholar 

  92. H. Christodoulidi, Dynamics on low-dimensional tori and chaos in Hamiltonian systems. Ph.D. Thesis, University of Patras, 2010

    Google Scholar 

  93. H. Christodoulidi, T. Bountis, Low-dimensional quasiperiodic motion in Hamiltonian systems. ROMAI J. 2, 37–44 (2006)

    MathSciNet  MATH  Google Scholar 

  94. H. Christodoulidi, C. Efthymiopoulos, T. Bountis, Energy localization on q-tori, long-term stability, and the interpretation of Fermi-Pasta-Ulam recurrences. Phys. Rev. E 81, 016210 (2010)

    ADS  Google Scholar 

  95. P.M. Cincotta, C. Simó, Simple tools to study global dynamics in non-axisymmetric galactic potentials-I. Astron. Astrophys. Suppl. 147, 205–228 (2000)

    ADS  Google Scholar 

  96. P.M. Cincotta, C.M. Giordano, C. Simó, Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits. Phys. D 182, 151–178 (2003)

    MathSciNet  MATH  Google Scholar 

  97. E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955)

    MATH  Google Scholar 

  98. R.M. Conte, M. Musette, The Painlevé Handbook (Springer, Heidelberg, 2008)

    MATH  Google Scholar 

  99. G. Contopoulos, Order and Chaos in Dynamical Astronomy (Springer, Heidelberg, 2002)

    MATH  Google Scholar 

  100. G. Contopoulos, B. Barbanis, Lyapunov characteristic numbers and the structure of phase-space. Astron. Astrophys. 222, 329–343 (1989)

    MathSciNet  ADS  Google Scholar 

  101. G. Contopoulos, P. Magnenat, Simple three-dimensional periodic orbits in a galactic-type potential. Celest. Mech. 37, 387–414 (1985)

    MathSciNet  ADS  MATH  Google Scholar 

  102. G. Contopoulos, N. Voglis, Spectra of stretching numbers and helicity angles in dynamical systems. Celest. Mech. Dyn. Astr. 64, 1–20 (1996)

    MathSciNet  ADS  MATH  Google Scholar 

  103. G. Contopoulos, N. Voglis, A fast method for distinguishing between ordered and chaotic orbits. Astron. Astrophys. 317, 73–81 (1997)

    ADS  Google Scholar 

  104. G. Contopoulos, L. Galgani, A. Giorgilli, On the number of isolating integrals in Hamiltonian systems. Phys. Rev. A 18, 1183–1189 (1978)

    ADS  Google Scholar 

  105. T. Cretegny, T. Dauxois, S. Ruffo, A. Torcini, Localization and equipartition of energy in the beta-FPU chain: chaotic breathers. Phys. D 121, 109–126 (1998)

    Google Scholar 

  106. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    ADS  Google Scholar 

  107. H.T. Davis, Introduction to Nonlinear Differential and Integral Equations (Dover, New York, 1962)

    MATH  Google Scholar 

  108. T. Dauxois, Non-Gaussian distributions under scrutiny. J. Stat. Mech.-Theory Exp. 2007, N08001 (2007)

    Google Scholar 

  109. J. De Luca, A.J. Lichtenberg, Transitions and time scales to equipartition in oscillator chains: low-frequency initial conditions. Phys. Rev. E 66, 026206 (2002)

    MathSciNet  ADS  Google Scholar 

  110. J. De Luca, A.J. Lichtenberg, M.A. Lieberman, Time scale to ergodicity in the Fermi-Pasta-Ulam system. Chaos 5, 283–297 (1995)

    ADS  Google Scholar 

  111. J. De Luca, A.J. Lichtenberg, S. Ruffo, Energy transitions and time scales to equipartition in the Fermi-Pasta-Ulam oscillator chain. Phys. Rev. E 51, 2877–2885 (1995)

    ADS  Google Scholar 

  112. J. De Luca, A.J. Lichtenberg, S. Ruffo, Finite times to equipartition in the thermodynamic limit. Phys. Rev. E 60, 3781–3786 (1999)

    ADS  Google Scholar 

  113. L. Drossos, T. Bountis, Evidence of natural boundary and nonintegrability of the mixmaster universe model. J. Nonlinear Sci. 7, 1–11 (1997)

    MathSciNet  Google Scholar 

  114. W.E. Drummond, D. Pines, Nonlinear stability of plasma oscillations. Nucl. Fusion Suppl. 3, 1049–1057 (1962)

    Google Scholar 

  115. S.M. Duarte Queirós, The role of ergodicity and mixing in the central limit theorem for Casati-Prosen triangle map variables. Phys. Lett. A 373, 1514–1518 (2009)

    MATH  Google Scholar 

  116. G. Duffing, Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung (Vieweg & Sohn, Braunschweig, 1918)

    MATH  Google Scholar 

  117. J.-P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)

    MathSciNet  ADS  Google Scholar 

  118. J.T. Edwards, D.J. Thouless, Numerical studies of localization in disordered systems. J. Phys. C Solid 5, 807–820 (1972)

    ADS  Google Scholar 

  119. N.K. Efremidis, D.N. Christodoulides, Lattice solitons in Bose-Einstein condensates. Phys. Rev. A 67, 063608 (2003)

    ADS  Google Scholar 

  120. L.H. Eliasson, Absolutely convergent series expansions for quasi periodic motions. Math. Phys. Electron. J. 2, 4 (1996)

    MathSciNet  Google Scholar 

  121. E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems. Los Alamos Sci. Lab. Rep. No. LA-1940 (1955), in Nonlinear Wave Motion, ed. by A.C. Newell. Lectures in Applied Mathematics, vol. 15 (Amer. Math. Soc., Providence, 1974), pp. 143–155

    Google Scholar 

  122. S. Flach, Conditions on the existence of localized excitations in nonlinear discrete systems. Phys. Rev. E 50, 3134–3142 (1994)

    MathSciNet  ADS  Google Scholar 

  123. S. Flach, Obtaining breathers in nonlinear Hamiltonian lattices. Phys. Rev. E 51, 3579–3587 (1995)

    ADS  Google Scholar 

  124. S. Flach, Spreading of waves in nonlinear disordered media. Chem. Phys. 375, 548–556 (2010)

    ADS  Google Scholar 

  125. S. Flach, A.V. Gorbach, Discrete breathers – Advances in theory and applications. Phys. Rep. 467, 1–116 (2008)

    ADS  Google Scholar 

  126. S. Flach, A. Ponno, The Fermi-Pasta-Ulam problem: periodic orbits, normal forms and resonance overlap criteria. Phys. D 237, 908–917 (2008)

    MathSciNet  MATH  Google Scholar 

  127. S. Flach, C. Willis, Discrete breathers. Phys. Rep. 295, 181–264 (1998)

    MathSciNet  Google Scholar 

  128. S. Flach, M.V. Ivanchenko, O.I. Kanakov, q-Breathers and the Fermi-Pasta-Ulam problem. Phys. Rev. Lett. 95, 064102 (2005)

    ADS  Google Scholar 

  129. S. Flach, M.V. Ivanchenko, O.I. Kanakov, q-breathers in Fermi-Pasta-Ulam chains: existence, localization, and stability. Phys. Rev. E 73, 036618 (2006)

    MathSciNet  ADS  Google Scholar 

  130. S. Flach, O.I. Kanakov, M.V. Ivanchenko, K. Mishagin, q-breathers in FPU-lattices – scaling and properties for large systems. Int. J. Mod. Phys. B 21, 3925–3932 (2007)

    ADS  Google Scholar 

  131. S. Flach, D.O. Krimer, Ch. Skokos, Universal spreading of wavepackets in disordered nonlinear systems. Phys. Rev. Lett. 102, 024101 (2009)

    ADS  Google Scholar 

  132. A.S. Fokas, T. Bountis, Order and the ubiquitous occurrence of Chaos. Phys. A 228, 236–244 (1996)

    MathSciNet  Google Scholar 

  133. J. Ford, The Fermi-Pasta-Ulam problem: paradox turns discovery. Phys. Rep. 213, 271–310 (1992)

    MathSciNet  ADS  Google Scholar 

  134. F. Freistetter, Fractal dimensions as chaos indicators. Celest. Mech. Dyn. Astron. 78, 211–225 (2000)

    MathSciNet  ADS  MATH  Google Scholar 

  135. C. Froeschlé, E. Lega, On the structure of symplectic mappings. The fast Lyapunov indicator: A very sensitive tool. Celest. Mech. Dyn. Astron. 78, 167–195 (2000)

    ADS  MATH  Google Scholar 

  136. C. Froeschlé, Ch. Froeschlé, E. Lohinger, Generalized Lyapunov characteristic indicators and corresponding Kolmogorov like entropy of the standard mapping. Celest. Mech. Dyn. Astron. 56, 307–314 (1993)

    ADS  MATH  Google Scholar 

  137. C. Froeschlé, E. Lega, R. Gonczi, Fast Lyapunov indicators. Application to asteroidal motion. Celest. Mech. Dyn. Astron. 67, 41–62 (1997)

    ADS  MATH  Google Scholar 

  138. C. Froeschlé, R. Gonczi, E. Lega, The fast Lyapunov indicator: a simple tool to detect weak chaos. Application to the structure of the main asteroidal belt. Planet. Space Sci. 45, 881–886 (1997)

    Google Scholar 

  139. F. Fucito, F. Marchesoni, E. Marinari, G. Parisi, L. Peliti, S. Ruffo, A. Vulpiani, Approach to equilibrium in a chain of nonlinear oscillators. J. Phys.-Paris 43, 707–713 (1982)

    MathSciNet  Google Scholar 

  140. L. Galgani, A. Scotti, Planck-like distributions in classical nonlinear mechanics. Phys. Rev. Lett. 28, 1173–1176 (1972)

    ADS  Google Scholar 

  141. Z. Galias, Rigorous investigation of the Ikeda map by means of interval arithmetic. Nonlinearity 15, 1759–1779 (2002)

    MathSciNet  ADS  MATH  Google Scholar 

  142. G. Gallavotti, Twistless KAM tori. Commun. Math. Phys. 164, 145–156 (1994)

    MathSciNet  ADS  MATH  Google Scholar 

  143. G. Gallavotti, Twistless KAM tori, quasi flat homoclinic intersections, and other cancellations in the perturbation series of certain completely integrable Hamiltonian systems: a review. Rev. Math. Phys. 6, 343–411 (1994)

    MathSciNet  MATH  Google Scholar 

  144. I. García-Mata, D.L. Shepelyansky, Delocalization induced by nonlinearity in systems with disorder. Phys. Rev. E 79, 026205 (2009)

    ADS  Google Scholar 

  145. P. Gaspard, Lyapunov exponent of ion motion in microplasmas. Phys. Rev. E 68, 056209 (2003)

    ADS  Google Scholar 

  146. E. Gerlach, Ch. Skokos, Comparing the efficiency of numerical techniques for the integration of variational equations. Discr. Cont. Dyn. Sys.-Supp. September, 475–484 (2011)

    Google Scholar 

  147. E. Gerlach, S. Eggl, Ch. Skokos, Efficient integration of the variational equations of multi-dimensional Hamiltonian systems: application to the Fermi-Pasta-Ulam lattice. Int. J. Bifurc. Chaos (2012, In Press) E-print arXiv:1104.3127

    Google Scholar 

  148. A. Giorgilli, U. Locatelli, Kolmogorov theorem and classical perturbation theory. Z. Angew. Math. Phys. 48, 220–261 (1997)

    MathSciNet  MATH  Google Scholar 

  149. A. Giorgilli, U. Locatelli, A classical self-contained proof of Kolmogorov’s theorem on invariant tori, in Hamiltonian Systems of Three or More Degrees of Freedom, ed. by C. Simó. NATO Advanced Study Institute, vol. 533 (Kluwer, Dordrecht, 1999), pp. 72–89

    Google Scholar 

  150. A. Giorgilli, D. Muraro, Exponentially stable manifolds in the neighbourhood of elliptic equilibria. Boll. Unione Mate. Ital. B 9, 1–20 (2006)

    MathSciNet  MATH  Google Scholar 

  151. M.L. Glasser, V.G. Papageorgiou, T.C. Bountis, Mel’nikov’s function for two-dimensional mappings. SIAM J. Appl. Math. 49, 692–703 (1989)

    MathSciNet  MATH  Google Scholar 

  152. A. Goriely, Integrability and Nonintegrability of Dynamical Systems (World Scientific, Singapore, 2001)

    MATH  Google Scholar 

  153. G.A. Gottwald, I. Melbourne, A new test for chaos in deterministic systems. Proc. R. Soc. Lond. A Math. 460, 603–611 (2004)

    MathSciNet  ADS  MATH  Google Scholar 

  154. G.A. Gottwald, I. Melbourne, Testing for chaos in deterministic systems with noise. Phys. D 212, 100–110 (2005)

    MathSciNet  MATH  Google Scholar 

  155. E. Goursat, Cours d’ Analyse Mathématique vol. 2 (Gauthier-Villars, Paris, 1905)

    Google Scholar 

  156. B. Grammaticos, B. Dorizzi, R. Padjen, Painlevé property and integrals of motion for the Hénon-Heiles system. Phys. Lett. A 89, 111–113 (1982)

    MathSciNet  ADS  Google Scholar 

  157. P.E. Greenwood, M.S. Nikulin, A Guide to Chi-Squared Testing, (Wiley, New York, 1996)

    Google Scholar 

  158. P. Grassberger, Proposed central limit behavior in deterministic dynamical systems. Phys. Rev. E 79, 057201 (2009)

    ADS  Google Scholar 

  159. W. Greub, Multilinear Algebra, 2nd edn. (Springer, Heidelberg, 1978)

    MATH  Google Scholar 

  160. J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983)

    MATH  Google Scholar 

  161. M.G. Hahn, X. Jiang, S. Umarov, On q-Gaussians and exchangeability. J. Phys. A-Math. Theor. 43, 165208 (2010)

    MathSciNet  ADS  Google Scholar 

  162. E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Comput. Math., vol. 31 (Springer, Berlin, 2002)

    Google Scholar 

  163. P. Hemmer, Dynamic and stochastic type of motion by the linear chain. Det Physiske Seminar i Trondheim 2, 66 (1959)

    Google Scholar 

  164. M. Hénon, C. Heiles, The applicability of the third integral of motion: some numerical experiments. Astron. J. 69, 73–79 (1964)

    ADS  Google Scholar 

  165. R.C. Hilborn, Chaos and Nonlinear Dynamics (Oxford University Press, New York, 1994)

    MATH  Google Scholar 

  166. H.J. Hilhorst, Note on a q-modified central limit theorem. J. Stat. Mech.-Theory Exp. 2010, P10023 (2010)

    MathSciNet  Google Scholar 

  167. H.J. Hilhorst, G. Schehr, A note on q-Gaussians and non-Gaussians in statistical mechanics. J. Stat. Mech.-Theory Exp. 2007, P06003 (2007)

    MathSciNet  Google Scholar 

  168. T.L. Hill Thermodynamics of Small Systems (Dover, New York, 1994)

    Google Scholar 

  169. E. Hille, Lectures on Ordinary Differential Equations (Addison-Wesley, Reading, 1969)

    MATH  Google Scholar 

  170. M.W. Hirsch, S. Smale, R.L. Devaney, Differential Equations, Dynamical Systems and an Introduction to Chaos (Elsevier, New York, 2004)

    MATH  Google Scholar 

  171. J.E. Howard, Discrete virial theorem. Celest. Mech. Dyn. Astron. 92, 219–241 (2005)

    ADS  MATH  Google Scholar 

  172. B. Hu, B. Li, H. Zhao, Heat conduction in one-dimensional chains. Phys. Rev. E 57, 2992 (1998)

    ADS  Google Scholar 

  173. H. Hu, A. Strybulevych, J. Page, S. Skipetrov, B. van Tiggelen, Localization of ultrasound in a three-dimensional elastic network. Nat. Phys. 4, 945–948 (2008)

    Google Scholar 

  174. J.H. Hubbard, B.B. Hubbard, Vector Calculus, Linear Algebra and Differential Forms: A Unified Approach (Prentice Hall, Upper Saddle River, 1999)

    MATH  Google Scholar 

  175. M.C. Irwin, Smooth Dynamical Systems (Academic, New York, 1980)

    MATH  Google Scholar 

  176. N. Jacobson, Lectures in Abstract Algebra, vol. II (van Nostrand, Princeton, 1951)

    Google Scholar 

  177. M. Johansson, G. Kopidakis, S. Lepri, S. Aubry, Transmission thresholds in time-periodically driven nonlinear disordered systems. Europhys. Lett. 86, 10009 (2009)

    ADS  Google Scholar 

  178. M. Johansson, G. Kopidakis, S. Aubry, KAM tori in 1D random discrete nonlinear Schrödinger model? Europhys. Lett. 91, 50001 (2010)

    ADS  Google Scholar 

  179. O.I. Kanakov, S. Flach, M.V. Ivanchenko, K.G. Mishagin, Scaling properties of q-breathers in nonlinear acoustic lattices. Phys. Lett. A 365, 416–420 (2007)

    ADS  Google Scholar 

  180. H. Kantz, P. Grassberger, Internal Arnold diffusion and chaos thresholds in coupled symplectic maps. J. Phys. A-Math. Gen. 21, L127–L133 (1988)

    MathSciNet  ADS  MATH  Google Scholar 

  181. G.I. Karanis, Ch.L. Vozikis, Fast detection of chaotic behavior in galactic potentials. Astron. Nachr. 329, 403–412 (2008)

    ADS  Google Scholar 

  182. Y.V. Kartashov, V.A. Vysloukh, L. Torner, Soliton shape and mobility control in optical lattices. Prog. Opt. 52, 63–148 (2009)

    Google Scholar 

  183. Y.V. Kartashov, B.A. Malomed, L. Torner, Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247 (2011)

    ADS  Google Scholar 

  184. A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Publ. Math. IHÉS 51, 137–173 (1980)

    MathSciNet  MATH  Google Scholar 

  185. A. Katok, J.-M. Strelcyn, Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities. Lecture Notes in Mathematics, vol. 1222 (Springer, Berlin, 1986)

    Google Scholar 

  186. A.N. Kaufman, Quasilinear diffusion of an axisymmetric toroidal plasma. Phys. Fluids 15, 1063 (1972)

    ADS  Google Scholar 

  187. W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, Making, probing and understanding Bose-Einstein condensates, in Bose-Einstein Condensation in Atomic Gases. Proceedings of the International School of Physics “Enrico Fermi”, ed. by M. Inguscio, S. Stringari, C.E. Wieman (IOS Press, Amsterdam, 1999), pp. 67–176

    Google Scholar 

  188. P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation. Tracts in Modern Physics, vol. 232 (Springer, Heidelberg, 2009)

    Google Scholar 

  189. Y.S. Kivshar, Intrinsic localized modes as solitons with a compact support. Phys. Rev. E 48, R43–R45 (1993)

    MathSciNet  ADS  Google Scholar 

  190. Y.S. Kivshar, G.P. Agrawal, Optical Solitons. From Fibers to Photonic Crystals (Academic, Amsterdam, 2003)

    Google Scholar 

  191. Y.S. Kivshar, B.A. Malomed, Dynamics of solitons in near-integrable systems. Rev. Mod. Phys. 61, 763–915 (1989)

    ADS  Google Scholar 

  192. W. Kobayashi, Y. Teraoka, I. Terasaki, An oxide thermal rectifier. Appl. Phys. Lett. 95, 171905 (2009)

    ADS  Google Scholar 

  193. Y. Kominis, Analytical solitary wave solutions of the nonlinear Kronig-Penney model in photonic structures. Phys. Rev. E 73, 066619 (2006)

    ADS  Google Scholar 

  194. Y. Kominis, T. Bountis, Analytical solutions of systems with piecewise linear dynamics. Int. J. Bifurc. Chaos 20, 509–518 (2010)

    MathSciNet  Google Scholar 

  195. Y. Kominis, K. Hizanidis, Lattice solitons in self-defocusing optical media: analytical solutions of the nonlinear Kronig-Penney model. Opt. Lett. 31, 2888–2890 (2006)

    ADS  Google Scholar 

  196. Y. Kominis, K. Hizanidis, Power dependent soliton location and stability in complex photonic structures. Opt. Expr. 16, 12124–12138 (2008)

    ADS  Google Scholar 

  197. Y. Kominis, K. Hizanidis, Power-dependent reflection, transmission and trapping dynamics of lattice solitons at interfaces. Phys. Rev. Lett. 102, 133903 (2009)

    ADS  Google Scholar 

  198. Y. Kominis, A. Papadopoulos, K. Hizanidis, Surface solitons in waveguide arrays: analytical solutions. Opt. Expr. 15, 10041–10051 (2007)

    ADS  Google Scholar 

  199. Y. Kominis, A.K. Ram, K. Hizanidis, Quasilinear theory of electron transport by radio frequency waves and non-axisymmetric perturbations in toroidal plasmas. Phys. Plasmas 15, 122501 (2008)

    ADS  Google Scholar 

  200. Y. Kominis, T. Bountis, K. Hizanidis, Breathers in a nonautonomous Toda lattice with pulsating coupling. Phys. Rev. E 81, 066601 (2010)

    MathSciNet  ADS  Google Scholar 

  201. Y. Kominis, A.K. Ram, K. Hizanidis, Kinetic theory for distribution functions of wave-particle interactions in plasmas. Phys. Rev. Lett. 104, 235001 (2010)

    ADS  Google Scholar 

  202. G. Kopidakis, S. Komineas, S. Flach, S. Aubry, Absence of wave packet diffusion in disordered nonlinear systems. Phys. Rev. Lett. 100, 084103 (2008)

    ADS  Google Scholar 

  203. Y.A. Kosevich, Nonlinear sinusoidal waves and their superposition in anharmonic lattices. Phys. Rev. Lett. 71, 2058–2061 (1993)

    ADS  Google Scholar 

  204. T. Kotoulas, G. Voyatzis, Comparative study of the 2:3 and 3:4 resonant motion with Neptune: an application of symplectic mappings and low frequency analysis. Celest. Mech. Dyn. Astron. 88, 343–363 (2004)

    MathSciNet  ADS  MATH  Google Scholar 

  205. I. Kovacic, M.J. Brennan (eds.), The Duffing Equation: Nonlinear Oscillators and Their Behaviour (Wiley, Hoboken, 2011)

    MATH  Google Scholar 

  206. B. Kramer, A. MacKinnon, Localization: theory and experiment. Rep. Prog. Phys. 56, 1469–1564 (1993)

    ADS  Google Scholar 

  207. D.O. Krimer, S. Flach, Statistics of wave interactions in nonlinear disordered systems. Phys. Rev. E 82, 046221 (2010)

    ADS  Google Scholar 

  208. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D.N. Christodoulides, Y. Silberberg, Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008)

    ADS  Google Scholar 

  209. L.D. Landau, E.M. Lifshitz, Mechanics, Third edn, Volume 1 of Course of Theoretical Physics (Butterworth-Heinemann, Amsterdam, 1976)

    Google Scholar 

  210. T.V. Laptyeva, J.D. Bodyfelt, D.O. Krimer, Ch. Skokos, S. Flach, The crossover from strong to weak chaos for nonlinear waves in disordered systems. Europhys. Lett. 91, 30001 (2010)

    ADS  Google Scholar 

  211. J. Laskar, The chaotic motion of the Solar System: a numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990)

    ADS  Google Scholar 

  212. J. Laskar, Frequency analysis of multi-dimensional systems. Global dynamics and diffusion. Phys. D 67, 257–281 (1993)

    MathSciNet  MATH  Google Scholar 

  213. J. Laskar, Introduction to frequency map analysis, in Hamiltonian Systems of Three or More Degrees of Freedom, ed. by C. Simó. NATO Advanced Study Institute, vol. 533 (Kluwer, Dordrecht, 1999), pp. 134–150

    Google Scholar 

  214. J. Laskar, C. Froeschlé, A. Celletti, The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard map. Phys. D 56, 253–269 (1992)

    MATH  Google Scholar 

  215. M. Lax, W.H. Louisell, W.B. McKnight, From Maxwell to paraxial wave optics. Phys. Rev. A 11, 1365–1370 (1975)

    ADS  Google Scholar 

  216. F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, Y. Silberberg, Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008)

    Google Scholar 

  217. E. Lega, C. Froeschlé, Comparison of convergence towards invariant distributions for rotation angles, twist angles and local Lyapunov characteristic numbers. Planet. Space Sci. 46, 1525–1534 (1998)

    ADS  Google Scholar 

  218. M. Leo, R.A. Leo, Stability properties of the N ∕ 4 (π ∕ 2-mode) one-mode nonlinear solution of the Fermi-Pasta-Ulam-β system. Phys. Rev. E 76, 016216 (2007)

    ADS  Google Scholar 

  219. S. Lepri, R. Livi, A. Politi, Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377(1), 1–80 (2003)

    MathSciNet  ADS  Google Scholar 

  220. S. Lepri, R. Livi, A. Politi, Studies of thermal conductivity in Fermi Pasta Ulam-like lattices. Chaos 15, 015118 (2005)

    ADS  Google Scholar 

  221. B. Li, J. Wang, Anomalous heat conduction and anomalous diffusion in one-dimensional systems. Phys. Rev. Lett. 91, 044301 (2003)

    ADS  Google Scholar 

  222. B. Li, L. Wang, B. Hu, Finite thermal conductivity in 1D models having zero Lyapunov exponents. Phys. Rev. Lett. 88, 223901 (2002)

    ADS  Google Scholar 

  223. B. Li, G. Casati, J. Wang, Heat conductivity in linear mixing systems. Phys. Rev. E 67, 021204 (2003)

    ADS  Google Scholar 

  224. B. Li, G. Casati, J. Wang, T. Prosen, Fourier Law in the alternate-mass hard-core potential chain. Phys. Rev. Lett. 92, 254301 (2004)

    ADS  Google Scholar 

  225. B. Li, J. Wang, G. Casati, Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004)

    ADS  Google Scholar 

  226. A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics, Second edn. (Springer, New York, 1992)

    MATH  Google Scholar 

  227. A. Lichtenberg, R. Livi, M. Pettini, S. Ruffo, Dynamics of oscillator chains. Lect. Notes Phys. 728, 21–121 (2008)

    MathSciNet  ADS  Google Scholar 

  228. R. Livi, M. Pettini, S. Ruffo, A. Vulpiani, Further results on the equipartition threshold in large nonlinear Hamiltonian systems. Phys. Rev. A 31, 2740–2742 (1985)

    ADS  Google Scholar 

  229. R. Livi, A. Politi, S. Ruffo, Distribution of characteristic exponents in the thermodynamic limit. J. Phys. A-Math. Gen. 19, 2033–2040 (1986)

    MathSciNet  ADS  MATH  Google Scholar 

  230. W.C. Lo, L. Wang, B. Li, Thermal transistor: heat flux switching and modulating. J. Phys. Soc. Jpn, 77(5), 054402 (2008)

    Google Scholar 

  231. E. Lohinger, C. Froeschlé, R. Dvorak, Generalized Lyapunov exponents indicators in Hamiltonian dynamics: an application to a double star system. Celest. Mech. Dyn. Astron. 56, 315–322 (1993)

    ADS  MATH  Google Scholar 

  232. A.M. Lyapunov, The General Problem of the Stability of Motion (Taylor and Francis, London, 1992) (English translation from the French: A. Liapounoff, Problème général de la stabilité du mouvement. Annal. Fac. Sci. Toulouse 9, 203–474 (1907). The French text was reprinted in Annals Math. Studies Vol.17 Princeton Univ. Press (1947). The original was published in Russian by the Mathematical Society of Kharkov in 1892)

    Google Scholar 

  233. M. Macek, P. Stránský, P. Cejnar, S. Heinze, J. Jolie, J. Dobeš, Classical and quantum properties of the semiregular arc inside the Casten triangle. Phys. Rev. C 75, 064318 (2007)

    ADS  Google Scholar 

  234. M. Macek, J. Dobeš, P. Stránský, P. Cejnar, Regularity-induced separation of intrinsic and collective dynamics. Phys. Rev. Lett. 105, 072503 (2010)

    ADS  Google Scholar 

  235. R.S. MacKay, S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity 7, 1623–1843 (1994)

    MathSciNet  ADS  MATH  Google Scholar 

  236. R.S. Mackay, J.D. Meiss, Hamiltonian Dynamical Systems (Adam Hilger, Bristol, 1986)

    Google Scholar 

  237. M.C. Mackey, M. Tyran-Kaminska, Deterministic Brownian motion: the effects of perturbing a dynamical system by a chaotic semi-dynamical system. Phys. Rep. 422, 167–222 (2006)

    MathSciNet  ADS  Google Scholar 

  238. R.S. Mackay, J.D. Meiss, I.C. Percival, Transport in Hamiltonian systems. Phys. D 13, 55–81 (1984)

    MathSciNet  MATH  Google Scholar 

  239. N.P. Maffione, L.A. Darriba, P.M. Cincotta, C.M. Giordano, A comparison of different indicators of chaos based on the deviation vectors: application to symplectic mappings. Celest. Mech. Dyn. Astron. 111, 285–307 (2011)

    MathSciNet  ADS  Google Scholar 

  240. W. Magnus, S. Winkler, Hill’s Equation (Wiley, New York, 1969) and 2nd edn. (Dover, New York, 2004)

    Google Scholar 

  241. P. Maniadis, T. Bountis, Quasiperiodic and chaotic breathers in a parametrically driven system without linear dispersion. Phys. Rev. E 73, 046211 (2006)

    MathSciNet  ADS  Google Scholar 

  242. T. Manos, E. Athanassoula, Regular and chaotic orbits in barred galaxies – I. Applying the SALI/GALI method to explore their distribution in several models. Mon. Not. R. Astron. Soc. 415, 629–642 (2011)

    Google Scholar 

  243. T. Manos, S. Ruffo, Scaling with system size of the Lyapunov exponents for the Hamiltonian Mean Field model. Transp. Theor. Stat. 40, 360–381 (2011)

    MathSciNet  Google Scholar 

  244. T. Manos, Ch. Skokos, T. Bountis, Application of the Generalized Alignment Index (GALI) method to the dynamics of multi-dimensional symplectic maps, in Chaos, Complexity and Transport: Theory and Applications. Proceedings of the CCT07, ed. by C. Chandre, X. Leoncini, G. Zaslavsky (World Scientific, Singapore, 2008), pp. 356–364

    Google Scholar 

  245. T. Manos, Ch. Skokos, E. Athanassoula, T. Bountis, Studying the global dynamics of conservative dynamical systems using the SALI chaos detection method. Nonlinear Phenom. Complex Syst. 11, 171–176 (2008)

    MathSciNet  Google Scholar 

  246. T. Manos, Ch. Skokos, T. Bountis, Global dynamics of coupled standard maps, in Chaos in Astronomy. Astrophysics and Space Science Proceedings, ed. by G. Contopoulos, P.A. Patsis (Springer, Berlin/Heidelberg, 2009), pp. 367–371

    Google Scholar 

  247. T. Manos, Ch. Skokos, Ch. Antonopoulos, Probing the local dynamics of periodic orbits by the generalized alignment index (GALI) method. Int. J. Bifurc. Chaos (2012, In Press) E-print arXiv:1103.0700

    Google Scholar 

  248. J.L. Marín, S. Aubry, Breathers in nonlinear lattices: numerical calculation from the anticontinuous limit. Nonlinearity 9, 1501–1528 (1996)

    MathSciNet  ADS  MATH  Google Scholar 

  249. J.D. Meiss, E. Ott, Markov tree model of transport in area-preserving maps. Phys. D 20, 387–402 (1986)

    MathSciNet  MATH  Google Scholar 

  250. D.R. Merkin, Introduction to the Theory of Stability. Series: Texts in Applied Mathematics, vol. 24 (Springer, New York, 1997)

    Google Scholar 

  251. G. Miritello, A. Pluchino, A. Rapisarda, Central limit behavior in the Kuramoto model at the “edge of chaos”. Phys. A 388, 4818–4826 (2009)

    Google Scholar 

  252. M. Molina, Transport of localized and extended excitations in a nonlinear Anderson model. Phys. Rev. B 58, 12547–12550 (1998)

    ADS  Google Scholar 

  253. M. Mulansky, A. Pikovsky, Spreading in disordered lattices with different nonlinearities. Europhys. Lett. 90, 10015 (2010)

    ADS  Google Scholar 

  254. M. Mulansky, K. Ahnert, A. Pikovsky, D.L. Shepelyansky, Dynamical thermalization of disordered nonlinear lattices. Phys. Rev. E 80, 056212 (2009)

    ADS  Google Scholar 

  255. M. Mulansky, K. Ahnert, A. Pikovsky, Scaling of energy spreading in strongly nonlinear disordered lattices. Phys. Rev. E 83, 026205 (2011)

    ADS  Google Scholar 

  256. N.N. Nekhoroshev, An exponential estimate of the time of stability of nearly-integrable Hamiltoninan systems. Russ. Math. Surv. 32(6), 1–65 (1977)

    MATH  Google Scholar 

  257. Z. Nitecki, Differentiable Dynamics (M.I.T., Cambridge, MA, 1971)

    MATH  Google Scholar 

  258. J.A. Núñez, P.M. Cincotta, F.C. Wachlin, Information entropy. An indicator of chaos. Celest. Mech. Dyn. Astron. 64, 43–53 (1996)

    ADS  MATH  Google Scholar 

  259. V.I. Oseledec, A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 19, 197–231 (1968)

    MathSciNet  Google Scholar 

  260. E.A. Ostrovskaya, Y.S. Kivshar, Matter-wave gap vortices in optical lattices. Phys. Rev. Lett. 93, 160405 (2004)

    ADS  Google Scholar 

  261. A.A. Ovchinnikov, Localized long-lived vibrational states in molecular crystals. Sov. Phys. JETP-USSR 30, 147 (1970)

    ADS  Google Scholar 

  262. P. Panagopoulos, T.C. Bountis, Ch. Skokos, Existence and stability of localized oscillations in one-dimensional lattices with soft spring and hard spring potentials. J. Vib. Acoust. 126, 520–527 (2004)

    Google Scholar 

  263. P. Papagiannis, Y. Kominis, K. Hizanidis, Power- and momentum-dependent soliton dynamics in lattices with longitudinal modulation. Phys. Rev. A 84, 013820 (2011)

    ADS  Google Scholar 

  264. R.E. Peierls, Quantum theory of solids, in Theoretical Physics in the Twentieth Century, ed. by M. Fierz, V.F. Weisskopf (Wiley, New York, 1961) 140–160

    Google Scholar 

  265. L. Perko, Differential Equations and Dynamical Systems (Springer, New York, 1995)

    Google Scholar 

  266. J.B. Pesin, Families of invariant manifolds corresponding to nonzero characteristic exponents. Math. USSR Izv. 10, 1261–1305 (1976)

    Google Scholar 

  267. Ya.B. Pesin, Lyapunov characteristic indexes and ergodic properties of smooth dynamic systems with invariant measure. Dokl. Acad. Nauk. SSSR 226, 774–777 (1976)

    Google Scholar 

  268. Ya.B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv. 32(4), 55–114 (1977)

    Google Scholar 

  269. Y.G. Petalas, C.G. Antonopoulos, T.C. Bountis, M.N. Vrahatis, Evolutionary methods for the approximation of the stability domain and frequency optimization of conservative maps. Int. J. Bifurc. Chaos 18, 2249–2264 (2008)

    MathSciNet  MATH  Google Scholar 

  270. M. Peyrard, The design of a thermal rectifier. Europhys. Lett. 76, 49 (2006)

    ADS  Google Scholar 

  271. A. Pikovsky, D. Shepelyansky, Destruction of Anderson localization by a weak nonlinearity. Phys. Rev. Lett. 100, 094101 (2008)

    ADS  Google Scholar 

  272. P. Poggi, S. Ruffo, Exact solutions in the FPU oscillator chain. Phys. D 103, 251–272 (1997)

    MathSciNet  MATH  Google Scholar 

  273. H. Poincaré, Sur les Propriétés des Functions Définies par les Équations aux Différences Partielles (Gauthier-Villars, Paris, 1879)

    Google Scholar 

  274. H. Poincaré Les Méthodes Nouvelles de la Mécanique Céleste, vol. 1 (Gauthier Villars, Paris, 1892) (English translation by D.L. Goroff, New Methods in Celestial Mechanics (American Institute of Physics, 1993))

    Google Scholar 

  275. A. Ponno, D. Bambusi, Korteweg-de Vries equation and energy sharing in Fermi-Pasta-Ulam. Chaos 15, 015107 (2005)

    MathSciNet  ADS  Google Scholar 

  276. A. Ponno, E. Christodoulidi, Ch. Skokos, S. Flach, The two-stage dynamics in the Fermi-Pasta-Ulam problem: from regular to diffusive behavior. Chaos, 21, 043127 (2011)

    ADS  Google Scholar 

  277. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flanney, Numerical Recipes in Fortran 77. The Art of Scientific Computing, Second edn. (Cambridge University Press, Cambridge/New York, 2001)

    Google Scholar 

  278. K. Pyragas, Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992)

    ADS  Google Scholar 

  279. A. Ramani, B. Grammaticos, T. Bountis, The Painlevé property and singularity analysis of integrable and non-integrable systems. Phys. Rep. 180, 159–245 (1989)

    MathSciNet  ADS  Google Scholar 

  280. A.B. Rechester, R.B. White, Calculation of turbulent diffusion for the Chirikov-Taylor model. Phys. Rev. Lett. 44, 1586–1589 (1980)

    MathSciNet  ADS  Google Scholar 

  281. A. Rényi, On measures of information and entropy, in Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability 1960, University of California Press, Berkeley/Los Angeles, 1961, pp. 547–561

    Google Scholar 

  282. J.A. Rice, Mathematical Statistics and Data Analysis, Second edn. (Duxbury Press, Belmont, 1995)

    MATH  Google Scholar 

  283. B. Rink, Symmetric invariant manifolds in the Fermi-Pasta-Ulam lattice. Phys. D 175, 31–42 (2003)

    MathSciNet  MATH  Google Scholar 

  284. G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, M. Inguscio, Anderson localization of a non-interacting Bose-Einstein condensate. Nature 453, 895–899 (2008)

    ADS  Google Scholar 

  285. A. Rodríguez, V. Schwämmle, C. Tsallis, Strictly and asymptotically scale invariant probabilistic models of N correlated binary random variables having q-Gaussians as N →  limiting distributions. J. Stat. Mech.-Theory Exp. 2008, P09006 (2008)

    Google Scholar 

  286. R.M. Rosenberg, The normal modes of nonlinear n-degree-of-freedom systems. J. Appl. Mech. 29, 7–14 (1962)

    ADS  MATH  Google Scholar 

  287. V.M. Rothos, T. Bountis, Mel’nikov analysis of phase space transport in a N-degree-of-freedom Hamiltonian system. Nonlinear Anal. Theor. 30, 1365–1374 (1997)

    MathSciNet  MATH  Google Scholar 

  288. V.M. Rothos, T. Bountis, Mel’nikov’s vector and singularity analysis of periodically perturbed 2 d.o.f. Hamiltonian systems, in Hamiltonian Systems of Three or More Degrees of Freedom, ed. by C. Simó. NATO Advanced Study Institute, vol. 533 (Kluwer, Dordrecht, 1999), pp. 544–548

    Google Scholar 

  289. D. Ruelle, Ergodic theory of differentiable dynamical systems. Publ. Math. IHÉS 50, 27–58 (1979)

    MathSciNet  MATH  Google Scholar 

  290. D. Ruelle, Measures describing a turbulent flow. Ann. NY Acad.Sci. 357, 1–9 (1980)

    Google Scholar 

  291. D. Ruelle, Large volume limit of the distribution of characteristic exponents in turbulence. Commun. Math. Phys. 87, 287–302 (1982)

    MathSciNet  ADS  MATH  Google Scholar 

  292. G. Ruiz, C. Tsallis, Nonextensivity at the edge of chaos of a new universality class of one-dimensional unimodal dissipative maps. Eur. Phys. J. B 67, 577–584 (2009)

    MathSciNet  ADS  MATH  Google Scholar 

  293. G. Ruiz, T. Bountis, C. Tsallis, Time-evolving statistics of chaotic orbits of conservative maps in the context of the central limit theorem. Int. J. Bifurc. Chaos. (2012, In Press) arXiv:1106.6226

    Google Scholar 

  294. V.P. Sakhnenko, G.M. Chechin, Symmetrical selection rules in nonlinear dynamics of atomic systems. Sov. Phys. Dokl. 38, 219–221 (1993)

    Google Scholar 

  295. V.P. Sakhnenko, G.M. Chechin, Bushes of modes and normal modes for nonlinear dynamical systems with discrete symmetry. Sov. Phys. Dokl. 39, 625–628 (1994)

    MathSciNet  Google Scholar 

  296. Zs. Sándor, B. Érdi, C. Efthymiopoulos, The phase space structure around L 4 in the restricted three-body problem. Celest. Mech. Dyn. Astron. 78, 113–123 (2000)

    Google Scholar 

  297. Zs. Sándor, B. Érdi, A. Széll, B. Funk, The relative Lyapunov indicator: an efficient method of chaos detection. Celest. Mech. Dyn. Astron. 90, 127–138 (2004)

    Google Scholar 

  298. K.W. Sandusky, J.B. Page, Interrelation between the stability of extended normal modes and the existence of intrinsic localized modes in nonlinear lattices with realistic potentials. Phys. Rev. B 50, 866–887 (1994)

    ADS  Google Scholar 

  299. T. Schwartz, G. Bartal, S. Fishman, M. Segev, Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007)

    ADS  Google Scholar 

  300. H. Segur, M.D. Kruskal, Nonexistence of small-amplitude breather solutions in ϕ4 theory. Phys. Rev. Lett. 58, 747–750 (1987)

    MathSciNet  ADS  Google Scholar 

  301. V.D. Shapiro, R.Z. Sagdeev, Nonlinear wave-particle interaction and conditions for the applicability of quasilinear theory. Phys. Rep. 283, 49–71 (1997)

    ADS  Google Scholar 

  302. H. Shiba, N. Ito, Anomalous heat conduction in three-dimensional nonlinear lattices. J. Phys. Soc. Jpn. 77, 05400 (2008)

    Google Scholar 

  303. S. Shinohara, Low-dimensional solutions in the quartic Fermi-Pasta-Ulam system. J. Phys. Soc. Jpn. 71, 1802–1804 (2002)

    ADS  Google Scholar 

  304. S. Shinohara, Low-dimensional subsystems in anharmonic lattices. Prog. Theor. Phys. Suppl. 150, 423–434 (2003)

    ADS  Google Scholar 

  305. I.V. Sideris, Measure of orbital stickiness and chaos strength. Phys. Rev. E 73, 066217 (2006)

    ADS  Google Scholar 

  306. A.J. Sievers, S. Takeno, Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970–973 (1988)

    ADS  Google Scholar 

  307. Y.G. Sinai, Dynamical systems with elastic reflections. Russ. Math. Surv. 25(2), 137–189 (1970)

    MathSciNet  MATH  Google Scholar 

  308. Ya.G. Sinai, Gibbs measures in ergodic theory. Russ. Math. Surv. 27(4), 21–69 (1972)

    Google Scholar 

  309. Ch. Skokos, Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J. Phys. A-Math. Gen. 34, 10029–10043 (2001)

    MathSciNet  ADS  MATH  Google Scholar 

  310. Ch. Skokos, The Lyapunov characteristic exponents and their computation. Lect. Notes Phys. 790, 63–135 (2010)

    ADS  Google Scholar 

  311. Ch. Skokos, S. Flach, Spreading of wave packets in disordered systems with tunable nonlinearity. Phys. Rev. E 82, 016208 (2010)

    ADS  Google Scholar 

  312. Ch. Skokos, E. Gerlach, Numerical integration of variational equations. Phys. Rev. E 82, 036704 (2010)

    MathSciNet  ADS  Google Scholar 

  313. Ch. Skokos, Ch. Antonopoulos, T.C. Bountis, M.N. Vrahatis, How does the smaller alignment index (SALI) distinguish order from chaos? Prog. Theor. Phys. Suppl. 150, 439–443 (2003)

    ADS  Google Scholar 

  314. Ch. Skokos, Ch. Antonopoulos, T.C. Bountis, M.N. Vrahatis, Detecting order and chaos in Hamiltonian systems by the SALI method. J. Phys. A-Math. Gen. 37, 6269–6284 (2004)

    MathSciNet  ADS  Google Scholar 

  315. Ch. Skokos, T.C. Bountis, Ch. Antonopoulos, Geometrical properties of local dynamics in Hamiltonian systems: the generalized alignment index (GALI) method. Phys. D 231, 30–54 (2007)

    MathSciNet  MATH  Google Scholar 

  316. Ch. Skokos, T. Bountis, Ch. Antonopoulos, Detecting chaos, determining the dimensions of tori and predicting slow diffusion in Fermi-Pasta-Ulam lattices by the generalized alignment index method. Eur. Phys. J.-Spec. Top. 165, 5–14 (2008)

    Google Scholar 

  317. Ch. Skokos, D.O. Krimer, S. Komineas, S. Flach, Delocalization of wave packets in disordered nonlinear chains. Phys. Rev. E 79, 056211 (2009)

    MathSciNet  ADS  Google Scholar 

  318. A. Smerzi, A. Trombettoni, Nonlinear tight-binding approximation for Bose-Einstein condensates in a lattice. Phys. Rev. A 68, 023613 (2003)

    MathSciNet  ADS  Google Scholar 

  319. P. Soulis, T. Bountis, R. Dvorak, Stability of motion in the Sitnikov 3-body problem. Celest. Mech. Dyn. Astron. 99, 129–148 (2007)

    MathSciNet  ADS  MATH  Google Scholar 

  320. P.S. Soulis, K.E. Papadakis, T. Bountis, Periodic orbits and bifurcations in the Sitnikov four-body problem. Celest. Mech. Dyn. Astron. 100, 251–266 (2008)

    MathSciNet  ADS  Google Scholar 

  321. M. Spivak, Comprehensive Introduction to Differential Geometry, vol. 1 (Perish Inc., Houston, 1999)

    MATH  Google Scholar 

  322. P. Stránský, P. Hruška, P. Cejnar, Quantum chaos in the nuclear collective model: classical-quantum correspondence. Phys. Rev. E 79, 046202 (2009)

    ADS  Google Scholar 

  323. M. Strözer, P. Gross, C.M. Aegerter, G. Maret, Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96, 063904 (2006)

    ADS  Google Scholar 

  324. Á. Süli, Motion indicators in the 2D standard map. PADEU 17, 47–62 (2006)

    ADS  Google Scholar 

  325. A. Széll, B. Érdi, Z. Sándor, B. Steves, Chaotic and stable behaviour in the Caledonian symmetric four-body problem. Mon. Not. R. Astron. Soc. 347, 380–388 (2004)

    ADS  Google Scholar 

  326. M. Terraneo, M. Peyrard, G. Casati, Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier. Phys. Rev. Lett. 88, 094302 (2002)

    ADS  Google Scholar 

  327. U. Tirnakli, C. Beck, C. Tsallis, Central limit behavior of deterministic dynamical systems. Phys. Rev. E 75, 040106 (2007)

    ADS  Google Scholar 

  328. U. Tirnakli, C. Tsallis, C. Beck, Closer look at time averages of the logistic map at the edge of chaos. Phys. Rev. E 79, 056209 (2009)

    MathSciNet  ADS  Google Scholar 

  329. M. Toda, Theory of Nonlinear Lattices, (2nd edn.) (Springer, Berlin, 1989)

    MATH  Google Scholar 

  330. S. Trillo, W. Torruellas (eds.), Spatial Solitons (Springer, Berlin, 2001)

    Google Scholar 

  331. A. Trombettoni, A. Smerzi, Discrete solitons and breathers with dilute Bose-Einstein condensates. Phys. Rev. Lett. 86, 2353–2356 (2001)

    ADS  Google Scholar 

  332. C. Tsallis, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World (Springer, New York, 2009)

    MATH  Google Scholar 

  333. C. Tsallis, U. Tirnakli, Nonadditive entropy and nonextensive statistical mechanics – Some central concepts and recent applications. J. Phys. Conf. Ser. 201, 012001 (2010)

    ADS  Google Scholar 

  334. G.P. Tsironis, An algebraic approach to discrete breather construction. J. Phys. A-Math. Theor. 35, 951–957 (2002)

    MathSciNet  ADS  MATH  Google Scholar 

  335. S. Umarov, C. Tsallis, S. Steinberg, On a q-central limit theorem consistent with nonextensive statistical mechanics. Milan J. Math. 76, 307–328 (2008)

    MathSciNet  MATH  Google Scholar 

  336. S. Umarov, C. Tsallis, M. Gell-Mann, S. Steinberg, Generalization of symmetric α-stable Lévy distributions for q > 1. J. Math. Phys. 51, 033502 (2010)

    MathSciNet  ADS  Google Scholar 

  337. A.A. Vedenov, E.P. Velikhov, R.Z. Sagdeev, Nonlinear oscillations of rarified plasma. Nucl. Fusion 1, 82–100 (1961)

    Google Scholar 

  338. H. Veksler, Y. Krivolapov, S. Fishman, Spreading for the generalized nonlinear Schrödinger equation with disorder. Phys. Rev. E 80, 037201 (2009)

    ADS  Google Scholar 

  339. H. Veksler, Y. Krivolapov, S. Fishman, Double-humped states in the nonlinear Schrödinger equation with a random potential. Phys. Rev. E 81, 017201 (2010)

    MathSciNet  ADS  Google Scholar 

  340. N. Voglis, G. Contopoulos, Invariant spectra of orbits in dynamical systems. J. Phys. A-Math. Gen. 27, 4899–4909 (1994)

    MathSciNet  ADS  MATH  Google Scholar 

  341. N. Voglis, G. Contopoulos, C. Efthymiopoulos, Method for distinguishing between ordered and chaotic orbits in four-dimensional maps. Phys. Rev. E 57, 372–377 (1998)

    ADS  Google Scholar 

  342. G. Voyatzis, S. Ichtiaroglou, On the spectral analysis of trajectories in near-integrable Hamiltonian systems. J. Phys. A-Math. Gen. 25, 5931–5943 (1992)

    MathSciNet  ADS  MATH  Google Scholar 

  343. J.-S. Wang, B. Li, Intriguing heat conduction of a chain with transverse motions. Phys. Rev. Lett. 92, 074302 (2004)

    ADS  Google Scholar 

  344. E.T. Whittaker, G.N. Watson, A Course in Modern Analysis, 4th edn. (Cambridge University Press, Cambridge, 1927)/(Cambridge Mathematical Library, Cambridge, 2002)

    Google Scholar 

  345. D.S. Wiersma, P. Bartolini, A. Lagendijk, R. Righini, Localization of light in a disordered medium. Nature 390, 671–673 (1997)

    ADS  Google Scholar 

  346. S. Wiggins, Applied Nonlinear Dynamical Systems and Chaos (Springer, New York, 1990)

    MATH  Google Scholar 

  347. S. Wiggins, Chaotic Transport in Dynamical Systems (Springer, New York, 1992)

    MATH  Google Scholar 

  348. N. Yang, G. Zhang, B. Li, Carbon nanocone: a promising thermal rectifier. Appl. Phys. Lett. 93, 243111 (2008)

    ADS  Google Scholar 

  349. H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990)

    MathSciNet  ADS  Google Scholar 

  350. H. Yoshida, Recent progress in the theory and application of symplectic integrators. Celest. Mech. Dyn. Astr. 56, 27–43 (1993)

    ADS  MATH  Google Scholar 

  351. K. Yoshimura, Modulational instability of zone boundary mode in nonlinear lattices: rigorous results. Phys. Rev. E 70, 016611 (2004)

    MathSciNet  ADS  Google Scholar 

  352. N.J. Zabusky, M.D. Kruskal, Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    ADS  MATH  Google Scholar 

  353. G.M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)

    MathSciNet  ADS  MATH  Google Scholar 

  354. Y. Zou, D. Pazó, M.C. Romano, M. Thiel, J. Kurths, Distinguishing quasiperiodic dynamics from chaos in short-time series. Phys. Rev. E 76, 016210 (2007)

    MathSciNet  ADS  Google Scholar 

  355. Y. Zou, M. Thiel, M.C. Romano, J. Kurths, Characterization of stickiness by means of recurrence. Chaos 17, 043101 (2007)

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bountis, T., Skokos, H. (2012). Normal Modes, Symmetries and Stability. In: Complex Hamiltonian Dynamics. Springer Series in Synergetics, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27305-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27305-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27304-9

  • Online ISBN: 978-3-642-27305-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics