Advertisement

Depth Distributions of Some Linear Codes

  • Zhi-min LiEmail author
  • Xin Xu
  • Cun-hua Li
Conference paper
  • 764 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 139)

Abstract

The depth distribution of a linear code is a new characterization. In this paper, we study the depth distributions of parity-check codes, [ p m  + r,2r] MDS codes and some direct and outer product codes. Furthermore, we derive four depth-equivalence classes for the binary [24, 12, 8] Golay codes.

Keywords

Depth depth distribution depth-equivalence classes derivative 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blinovsky, V., Erez, U., Litsyn, S.: Weight distribution moments of random linear/coset codes. Designs, Codes and Cryptography 57(2), 127–138 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Brackx, F., De Knock, B., De Schepper, H.: On the Fourier Spectra of Distribution In Clifford Analysis. Chinese Annals of Mathematics-Series B 27(5), 495–506 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chen, W., Torleiv, K.: Weight hierarchies of linear codes satisfying the almost chain condition. Science in China Series F: Information Sciences 46(3), 175–186 (2005)CrossRefGoogle Scholar
  4. 4.
    Etzion, T.: The depth distuibution–A new characterization for linear codes. IEEE Trans. Inform. Theory 43, 1361–1363 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Mitchel, C.J.: On integer-valued rational polynomials and depth distributions of binary codes. IEEE Trans. Inform. Theory 44, 3146–3150 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Luo, Y., Fu, F.-W., Wei, V.K.: On the depth distribution of linear codes. IEEE Trans. Inform. Theory 46, 2197–2203 (2000)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Computer EngineeringHuaihai Institute of TechnologyLianyungangChina

Personalised recommendations