Distribution Systems Reconfiguration Using the Hyper-Cube Ant Colony Optimization Algorithm

  • A. Y. Abdelaziz
  • Reham A. Osama
  • S. M. El-Khodary
  • Bijaya Ketan Panigrahi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7077)


This paper introduces the Ant Colony Optimization algorithm (ACO) implemented in the Hyper-Cube (HC) framework to solve the distribution network minimum loss reconfiguration problem. The ACO is a relatively new and powerful intelligence evolution method inspired from natural behavior of real ant colonies for solving optimization problems. In contrast to the usual ways of implementing ACO algorithms, the HC framework limits the pheromone values by introducing changes in the pheromone updating rules resulting in a more robust and easier to implement version of the ACO procedure. The optimization problem is formulated taking into account the operational constraints of the distribution systems. Results of numerical tests carried out on two test systems from literature are presented to show the effectiveness of the proposed approach.


Loss Reduction Good Configuration Network Reconfiguration Total Power Loss State Transition Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Merlin, Back, H.: Search for a minimal-loss operating spanning tree configuration in an urban power distribution system. In: Proc. 5th Power System Computation Conf. (PSCC), Cambridge, UK, pp. 1–18 (1975)Google Scholar
  2. 2.
    Enacheanu, B., Raison, B., Caire, R., Devaux, O., Bienia, W., Hadjsaid, N.: Radial network reconfiguration using genetic algorithm based on the matroid theory. IEEE Trans. Power Syst. 23(1), 186–195 (2008)CrossRefGoogle Scholar
  3. 3.
    Abdelaziz, A.Y., Mohamed, F.M., Mekhamer, S.F., Badr, M.A.L.: Distribution systems reconfiguration using a modified particle swarm optimization algorithm. Elec. Power Sys. Res. 79(11), 1521–1530 (2009)CrossRefGoogle Scholar
  4. 4.
    Jeon, Y.-J., Kim, J.-C.: Application of simulated annealing and tabu search for loss minimization in distribution systems. Int. J. Elec. Power & Energy Sys. 26(1) (January 2004)Google Scholar
  5. 5.
    Abdelaziz, A.Y., Mohamed, F.M., Mekhamer, S.F., Badr, M.A.L.: Distribution system reconfiguration using a modified Tabu Search algorithm. Elec. Power Syst. Res. 80(8), 943–953 (2010)CrossRefGoogle Scholar
  6. 6.
    Zhang, D., Fu, Z., Zhang, L.: An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems. Elec. Power Syst. Res. 77, 685–694 (2007)CrossRefGoogle Scholar
  7. 7.
    Sarfi, R.J., Salama, M.M.A., Chikhani, A.Y.: A survey of the state of the art in distribution system reconfiguration for system loss reduction. Electric Power Systems Research 31, 61–70 (1994)CrossRefGoogle Scholar
  8. 8.
    Dorigo, M.: Optimization, Learning and Natural Algorithms (in Italian) Ph.D. dissertation, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy (1992)Google Scholar
  9. 9.
    Shirmohammadi, D., Hong, H.W.: A compensation-based power flow method for weakly meshed distribution and transmission networks. IEEE Trans. Power Syst. 3 (1988)Google Scholar
  10. 10.
    Carpaneto, E., Chicco, G.: Distribution system minimum loss reconfiguration in the Hyper-Cube Ant Colony Optimization framework. Elec. Power Syst. Res. 78, 2037–2045 (2008)CrossRefGoogle Scholar
  11. 11.
    Blum, C., Dorigo, M.: The hyper cube framework for ant colony optimization. IEEE Trans. Syst. Man Cyber. 34(2) (April 2004)Google Scholar
  12. 12.
    Carpaneto, E., Chicco, G.: Ant-Colony Search-Based Minimum Losses Reconfiguration of Distribution Systems. In: IEEE MELECON, Dubrovnik, Croatia, pp. 971–974 (2004)Google Scholar
  13. 13.
    Daniel, C., Hafeezulla Khan, I., Ravichandran, S.: Distribution Network Reconfiguration For Loss Reduction Using Ant Colony System Algorithm. In: IEEE Indicon Conference, India, pp. 619–622 (2005)Google Scholar
  14. 14.
    Ahuja, A., Pahwa, A.: Using Ant Colony Optimization for Loss Minimization in Distribution Networks. In: Proceedings of the 37th Annual North American Power Symposium, pp. 470–474 (2005)Google Scholar
  15. 15.
    Baran, M.E., Wu, F.F.: Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Deliv. 4, 1401–1407 (1989)CrossRefGoogle Scholar
  16. 16.
    Shirmohammadi, D., Hong, H.W.: Reconfiguration of electric distribution networks for resistive line loss reduction. IEEE Trans. Power Deliv. 4, 1492–1498 (1989)CrossRefGoogle Scholar
  17. 17.
    Ghorbani, M.A., Hosseinian, S.H., Vahidi, B.: Application of Ant Colony System algorithm to distribution networks reconfiguration for loss reduction. In: 11th International Conference on Optimization of Electrical and Electronic Equipment, OPTIM, pp. 269–273 (May 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • A. Y. Abdelaziz
    • 1
  • Reham A. Osama
    • 1
  • S. M. El-Khodary
    • 1
  • Bijaya Ketan Panigrahi
    • 2
  1. 1.Department of Electrical Power & Machines, Faculty of EngineeringAin Shams UniversityCairoEgypt
  2. 2.Department of Electrical EngineeringIndian Institute of TechnologyDelhiIndia

Personalised recommendations