Non-linear Grayscale Image Enhancement Based on Firefly Algorithm

  • Tahereh Hassanzadeh
  • Hakimeh Vojodi
  • Fariborz Mahmoudi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7077)


The principal objective of enhancement is to improve the contrast and detail an image so, that the result is more suitable than the original image for a specific application. The enhancement process is a non-linear optimization problem with several constraints. In this paper, an adaptive local enhancement algorithm based on Firefly Algorithm (FA) is proposed. FA represents a new approach for optimization. The FA is used to search the optimal parameters for the best enhancement. In the proposed method, the evaluation criterion is defined by edge numbers, edge intensity and the entropy. The proposed method is demonstrated and compared with Linear Contrast Stretching (LCS), Histogram Equalization (HE), Genetic Algorithm based image Enhancement (GAIE), and the Particle Swarm Optimization based image enhancement (PSOIE) methods. Experimental results presented that proposed technique offers better performance.


image enhancement Firefly Algorithm evaluation criterion entropy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, New York (1992)Google Scholar
  2. 2.
    Galatsanos, N.P., Segall, C.A., Katsaggelos, A.K.: Digital Image Enhancement. In: Encyclopedia of Optical Engineering, doi:10.1081/E-EOE 120009510Google Scholar
  3. 3.
    Gonzalez, C., Fittes, B.A.: Gray-level transformations for interactive image enhancement. Mechanism and Machine Theory 12, 111–122 (1977)CrossRefGoogle Scholar
  4. 4.
    Bck, T., Fogel, D., Michalewicz, Z.: Handbook of Evolutionary Computation. Oxford Univ. Press, London (1997)CrossRefzbMATHGoogle Scholar
  5. 5.
    Munteanu, C., Lazarescu, V.: Evolutionary contrast stretching and detail enhancement of satellite images. In: Proc. Mendel, Berno, Czech Rep., pp. 94–99 (1999)Google Scholar
  6. 6.
    Pal, S.K., Bhandari, D.M., Kundu, K.: Genetic algorithms for optimal image enhancement. Pattern Recognition Letter 15, 261–271 (1994)CrossRefzbMATHGoogle Scholar
  7. 7.
    Gorai, A., Ghosh, A.: Gray-level Image Enhancement by Particle Swarm Optimization. In: World Congress on Nature & Biologically Inspired Computing, 978-1-4244-5612 (2009)Google Scholar
  8. 8.
    Braik, M., Sheta, A., Ayesh, A.: Image Enhancement Using Particle Swarm Optimization. In: WCE 2007, London, U.K. (2007)Google Scholar
  9. 9.
    Xiang, Z., Yan, Z.: Algorithm based on local variance to enhance contrast of fog-degraded image. Computer Applications 27, 510–512 (2007)Google Scholar
  10. 10.
    Munteanu, C., Rosa, A.: Gray-scale enhancement as an automatic process driven by evolution. IEEE Transaction on Systems, Man and Cybernatics-Part B: Cybernetics 34(2), 1292–1298 (2004)CrossRefGoogle Scholar
  11. 11.
    Yang, X.-S.: Firefly algorithm, stochastic TestFunctions and Design Optimization. Int. J. Bio-Inspired Computation 2(2), 78–84 (2010)CrossRefGoogle Scholar
  12. 12.
    Venkatalakshmi, K., Mercy Shalinie, S.: A Customized Particle Swarm Optimization Algorithm for Image Enhancement. In: ICCCCT 2010, 978-1-4244-7770 (2010)Google Scholar
  13. 13.
    Yan, X.S.: Nature-Inspired Metaheuristic Algorithms. LuniverPress (2008)Google Scholar
  14. 14.
    Munteanu, C., Rosa, A.: Gray-scale enhancement as an automatic process driven by evolution. IEEE Transaction on Systems,Man and Cybernatics-Part B:Cybernetics 34(2), 1292–1298 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tahereh Hassanzadeh
    • 1
  • Hakimeh Vojodi
    • 1
  • Fariborz Mahmoudi
    • 1
  1. 1.Faculty of IT and Computer EngineeringQazvin Azad UniversityQazvinIran

Personalised recommendations