Advertisement

A Survey on Swarm and Evolutionary Algorithms for Web Mining Applications

  • Ashok Kumar Panda
  • S. N. Dehuri
  • M. R. Patra
  • Anirban Mitra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7077)

Abstract

Internet is the biggest source of data and information today. It is the family of web sites and informative files. This paper focuses mainly on the web data and proposes some conceptual theories to extract knowledge through different web mining techniques like Clustering,FIS,ANN,LGP etc. We also focused on various aspects of applications of web mining in E-commerce & Business Intelligence. Finally, we discussed Swarm Intelligence(SI) techniques which are based on distributive self organized system such as Ant Colony Optimization (ACO), Stochastic Diffusion Search (SDS) and Particle Swarm Optimization (PSO) in brief in this survey which are preferred because of its vast uses and simplicity.

Keywords

Web mining Clustering E-commerce Swarm Intelligence Business Intelligence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, A.: i-Miner, a Web Usage mining framework using Hierarchical Intelligent Systems. In: IEEE International Conference on Fuzzy Systems, FUZZY-IEEE 2003, pp. 1129–1134 (2003)Google Scholar
  2. 2.
    Abraham, A.: Business Intelligence from Web Usage Mining. Journal of Information & Knowledge Management 2(4), 4375–4390 (2003)CrossRefGoogle Scholar
  3. 3.
    Chi, E.H., Rosien, A., Heer, J.: Lumberjack: Intelligent Discovery and Analysis of Web User Traffic Composition. In: Proceedings of ACM SIGKDD Workshop on Web Mining for Usage Patterns and User Profiles. ACM Press, Canada (2002)Google Scholar
  4. 4.
    Kosala, R., Blockeel, H.: Web Mining research: A Survey. ACM SIGKDD Explorations 2(1), 1–15 (2002)CrossRefGoogle Scholar
  5. 5.
    Etzioni, O.: The World Wide Web: Quagmire or Gold Mine? Comm. ACM 39(11), 65–68 (1996)CrossRefGoogle Scholar
  6. 6.
    Srivastava, J., Desikan, P., Kumar, V.: Web Mining: Accomplishments and Future Directions. In: Proc. US Nat’l Science Foundation Workshop on Next-Generation Data Mining (NGDM), Nat’l Science Foundation (2002)Google Scholar
  7. 7.
    Chakrabarti, S., et al.: Mining Web’s Link Structure. Computer 32(8), 60–67 (1999)CrossRefGoogle Scholar
  8. 8.
    Kumar, R., et al.: Trawling the Web for Emerging Cyber communities. In: Proc. 8th World Wide Web Conf. Elsevier Science (1999)Google Scholar
  9. 9.
    Pitkow, J.E., Bharat, K.: WebViz: A Tool for WWW Access Log Analysis. In: Proc. 1st Int’l Conf. World Wide Web, pp. 271–277. Elsevier Science (1994)Google Scholar
  10. 10.
    Srivastava, J., et al.: Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data. ACM SIGKDD Explorations 1(2), 12–23 (2000)CrossRefGoogle Scholar
  11. 11.
    Punin, J., Krishnamoorthy, M.: Extensible Graph Markup & Modeling Language Specification (1999), http://www.cs.rpi.edu/_puninj/XGMML/draftxgmml.html
  12. 12.
    Punin, J., Krishnamoorthy, M.: Log Markup Language (LOGML) Specification (2000), http://www.cs.rpi.edu/_puninj/LOGML/draft-logml.html
  13. 13.
    Maler, E., De Rose, S.: XML Linking Language (1998), http://www.w3.org/TR/WD-xlink
  14. 14.
    Mannila, H., Toivonen, H., Verkamo, I.: Discovering frequent episodes in sequences. In: 1st Intl. Conf. Knowledge Discovery and Data Mining (1995)Google Scholar
  15. 15.
    Advances in Web Usage Mining and User Profiling. In: Masand, B., Spiliopoulou, M. (eds.) WebKDD 1999. LNCS (LNAI), vol. 1836. Springer, Heidelberg (July 2000)Google Scholar
  16. 16.
    Mahat, P.: S I & Machine Learning. Res. Report, Dept. CS, LAMAR Univ.Google Scholar
  17. 17.
    Ansari, S., et al.: Integrating E-Commerce & data mining: Architecture & Challenges. In: WEBKDD 2000 Workshop (2000)Google Scholar
  18. 18.
  19. 19.
  20. 20.
  21. 21.
  22. 22.
  23. 23.
  24. 24.
  25. 25.
    Grosan, C., et al.: Swarm Intelligence in Data Mining. SCI 34 I-20-2006. Springer, Heidelberg (2006)CrossRefzbMATHGoogle Scholar
  26. 26.
    Chen, Y., Peng, L., Abraham, A.: Programming Hierarchical Takagi Sugeno Fuzzy Systems. In: 2nd International Symposium on Evolving Fuzzy Systems (EFS 2006). IEEE Press (2006)Google Scholar
  27. 27.
    Eberhart, R.C., Shi, Y.: Particle swarm optimization:developments,applications & resources. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC, Seoul (2001)Google Scholar
  28. 28.
    Hu, X., Shi, Y., Eberhart, R.C.: Recent Advances in Particle Swarm. In: Proceedings of Congress on evolutionary Computation (CEC), Portland, Oregon, pp. 90–97 (2004)Google Scholar
  29. 29.
    Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, vol. IV, pp. 1942–1948. IEEE Service Center, Piscataway (1995)CrossRefGoogle Scholar
  30. 30.
    Merkl, D.: Text mining with self-organizing maps. In: Handbook of Data Mining and Knowledge, pp. 903–910. Oxford University Press, Inc., New York (2002)Google Scholar
  31. 31.
    Pomeroy, P.: An Introduction to Particle Swarm Optimization (2003), http://www.adaptiveview.com/articles/ipsop1.html
  32. 32.
    Settles, M., Rylander, B.: Neural network learning using particle swarm optimizers. In: Advances in Information Science and Soft Computing, pp. 224–226 (2002)Google Scholar
  33. 33.
    Sousa, T., Neves, A., Silva, A.: Swarm Optimisation as a New Tool for Data Mining. In: International Parallel and Distributed Processing Symposium (IPDPS 2003), p. 144b (2003)Google Scholar
  34. 34.
    Steinbach, M., Karypis, G., Kumar, V.: A Comparison of Document Clustering Techniques. In: Text Mining Workshop, KDD (2000)Google Scholar
  35. 35.
    Ujjin, S., Bentley, P.J.: Particle swarm optimization recommender system. In: Proceedings of the IEEE Swarm Intelligence Symposium (SIS 2003), Indianapolis, Indiana, USA, pp. 124–131 (2003)Google Scholar
  36. 36.
    Weng, S.S., Liu, Y.H.: Mining time series data for segmentation by using Ant Colony Optimization. European Journal of Operational Research (2006), http://dx.doi.org/10.1016/j.ejor.2005.09.001
  37. 37.
    Dorigo, M., Bonaneau, E., Theraulaz, G.: Ant algorithms and stigmergy. Future Generation Computer Systems 16, 851–871 (2000)CrossRefGoogle Scholar
  38. 38.
    Abraham, A., Ramos, V.: Web Usage Mining Using Artificial Ant Colony Clustering and Genetic Programming. In: IEEE Congress on Evolutionary Computation (CEC 2003), pp. 1384–1391. IEEE Press, Australia (2003) ISBN 0780378040Google Scholar
  39. 39.
    Thangavel, K., Jaganathan, P.: Rule Mining Algorithm with a New Ant Colony Optimization Algorithm. In: Proc. of the International Conference on Computational Intelligence & Multimedia Applications, December 3-15, vol. 2, pp. 135–140 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ashok Kumar Panda
    • 1
  • S. N. Dehuri
    • 2
  • M. R. Patra
    • 3
  • Anirban Mitra
    • 1
  1. 1.Department of CSE & ITMITSRayagadaIndia
  2. 2.Department of Inf. & Comm. TechnologyF.M. UniversityBalesoreIndia
  3. 3.Department of Computer ScienceBerhampur UniversityIndia

Personalised recommendations