Skip to main content

Adaptive Multi-robot Team Reconfiguration Using a Policy-Reuse Reinforcement Learning Approach

  • Conference paper
Advanced Agent Technology (AAMAS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7068))

Included in the following conference series:

Abstract

We consider the problem of dynamically adjusting the formation and size of robot teams performing distributed area coverage, when they encounter obstacles or occlusions along their path. Based on our earlier formulation of the robotic team formation problem as a coalitional game called a weighted voting game (WVG), we show that the robot team size can be dynamically adapted by adjusting the WVG’s quota parameter. We use a Q-learning algorithm to learn the value of the quota parameter and a policy reuse mechanism to adapt the learning process to changes in the underlying environment. Experimental results using simulated e-puck robots within the Webots simulator show that our Q-learning algorithm converges within a finite number of steps in different types of environments. Using the learning algorithm also improves the performance of an area coverage application where multiple robot teams move in formation to explore an initially unknown environment by 5 − 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahceci, E., Soysal, O., Sahin, E.: Review: Pattern formation and adaptation in multi-robot systems. CMU Tech. Report no. CMU-RI-TR-03-43 (2003)

    Google Scholar 

  2. Balch, T., Arkin, R.: Behavior-based formation control of multi-robot teams. IEEE Transactions on Robotics and Automation 14(6), 926–939 (1998)

    Article  Google Scholar 

  3. Batalin, M., Sukhatme, G.: The Design and Analysis of an Efficient Local Algorithm for Coverage and Exploration Based on Sensor Network Deployment. IEEE Transactions on Robotics 23(4), 661–675 (2007)

    Article  Google Scholar 

  4. Burgard, W., Moors, M., Stachniss, C., Schneider, F.: Coordinated Multi-robot Exploration. IEEE Trans. Robotics 21(3), 376–386 (2005)

    Article  Google Scholar 

  5. Bowling, M., Veloso, M.: Simultaneous adversarial multi-robot learning. In: Proc. 18th International Joint Conference on Artificial Intelligence (IJCAI), pp. 699–704 (2003)

    Google Scholar 

  6. Cheng, K., Dasgupta, P., Wang, Y.: Distributed Area Coverage Using Robot Flocks. In: World Congress on Nature and Biologically Inspired Computing (NaBIC 2009), pp. 678–683 (2009)

    Google Scholar 

  7. Cheng, K., Dasgupta, P.: Weighted Voting Game Based Multi-robot Team Formation for Distributed Area Coverage. In: 3rd Practical and Cognitive Agents and Robots Workshop, Toronto, Canada, pp. 9–15 (2010)

    Google Scholar 

  8. Choset, H.: Coverage for robotics: A survey of recent results. Annals of Math and AI 31, 113–126 (2001)

    MATH  Google Scholar 

  9. Clark, P., Rilee, M., Curtis, S., Cheung, C., Truszkowski, W., Marr, G., Rudisill, M.: PAM: Biologically Inspired Engineering And Exploration Mission Concept, Components, And Requirements For Asteroid Population Survey. In: Proc. 55th Intl. Astronautical Congress, Vancouver, Canada, IAC-04-Q5.07 (2004)

    Google Scholar 

  10. Cook, P.: Stable control of vehicle convoys for safety and comfort. IEEE Trans. on Automatic Control 52(3), 526–531 (2007)

    Article  MathSciNet  Google Scholar 

  11. Dasgupta, P., Cheng, K.: Robust Multi-robot Team Formations using Weighted Voting Games. In: 10th International Symposium on Distributed Autonomous Robotics Systems (DARS 2010), EPFL, Switzerland (2010)

    Google Scholar 

  12. Dasgupta, P., Whipple, T., Cheng, K.: Effects of Multi-robot Team Formations on Distributed Area Coverage. International Journal of Swarm Intelligence Research 2(1), 44–69 (2011)

    Article  Google Scholar 

  13. Zlot, R., Stentz, A., Bernardine Dias, M., Thayer, S.: Multi-Robot Exploration Controlled by a Market Economy. In: Intl. Conf. Robotics and Automation (ICRA), pp. 3016–3023 (2002)

    Google Scholar 

  14. Fernandez, F., Borrajo, D., Parker, L.: A Reinforement Learning Algorithm in Cooperative Multi-Robot Domains. Journal of Intelligent and Robotic Systems 43(2-4), 161–174 (2005)

    Article  Google Scholar 

  15. Fernandez, F., Veloso, M.: Probabilistic Policy Reuse in Reinforcement Learning Agent. In: Proc. 5th Intl. Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 720–727 (2006)

    Google Scholar 

  16. Falconi, R., Gowal, S., Martinoli, A.: Graph Based Distributed Control of Non-Holonomic Vehicles Endowed with Local Positioning Information Engaged in Escorting Missions. In: ICRA 2010, Anchorage, AK, pp. 3207–3214 (2010)

    Google Scholar 

  17. Fredslund, J., Mataric, M.: A general algorithm for robot formations using local sensing and minimal comm. IEEE Trans. on Rob. and Auton. 18(5), 837–846 (2002)

    Article  Google Scholar 

  18. Gerkey, B., Mataric, M.: A formal analysis and taxonomy of task allocation in multi-robot systems. Intl. Journal of Robotics Research 23(9), 939–954 (2004)

    Article  Google Scholar 

  19. Gokce, F., Sahin, E.: To flock or not to flock: the pros and cons of flocking in long-range migration of mobile robot swarms. In: AAMAS 2009, pp. 65–72 (2009)

    Google Scholar 

  20. Gomes, E., Kowalczyk, R.: Dynamic analysis of multiagent Q-learning with ε-greedy exploration. In: Proc. of the 26th Annual International Conference on Machine Learning, Montreal, Canada, pp. 369–376 (2009)

    Google Scholar 

  21. Hazon, N., Kaminka, G.: On Redundancy, Efficiency, and Robustness in Coverage for Multiple Robots. Robotics and Autonomous Systems 56, 1102–1114 (2008)

    Article  Google Scholar 

  22. Jager, M., Nebel, B.: Dynamic Decentralized Area Partitioning for Cooperating Cleaning Robots. In: Intl. Conf. Robotics and Automation (ICRA), pp. 3577–3582 (2002)

    Google Scholar 

  23. Mataric, M.: Reinforcement learning in the multi-robot domain. Autonomous Robots 4, 73–83 (1997)

    Article  Google Scholar 

  24. Olfati Saber, R.: Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory. IEEE Trans. on Automatic Control 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  25. Rekleitis, I., Dudek, G., Milios, E.: Multi-Robot Collaboration for Robust Exploration. Annals of Mathematics and Artificial Intelligence 31(1-4), 7–40 (2001)

    Article  Google Scholar 

  26. Reynolds, C.: Flocks, herds and schools: A distributed behavioral model. Computer Graphics 21(4), 25–34 (1987)

    Article  Google Scholar 

  27. Silva, B.N., Machworth, A.: Using Spatial Hints to Improve Policy Reuse in a Reinforcement Learning Agent. In: Proc. 9th Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 317–324 (2010)

    Google Scholar 

  28. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artif. Intell. J. 101(1-2), 165–200 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game Theoretic and Logical Foundations. Cambridge University Press (2009)

    Google Scholar 

  30. Smith, B., Egerstedt, M., Howard, A.: Automatic Generation of Persistent Formations for Multi-Agent Networks Under Range Constraints. Mobile Networks and Applications Journal 14, 322–335 (2009)

    Article  Google Scholar 

  31. Smart, W., Kaelbling, L.: Effective reinforcement learning for mobile robots. In: Proc. International Conference on Robotics and Automation (ICRA), pp. 3404–3410 (2002)

    Google Scholar 

  32. Sutton, R., Barto, A.: Reinforcement Learning, Cambridge, MA, USA (1998)

    Google Scholar 

  33. Touzet, C.: Distributed Lazy Q-learning for cooperative mobile robots. International Journal of Advanced Robotic Systems 1(1), 5–13 (2004)

    Google Scholar 

  34. Tovey, C., Lagoudakis, M., Jain, S., Koenig, S.: The Generation of Bidding Rules for Auction-Based Robot Coordination. In: Multi-Robot Systems: From Swarms to Intelligent Automata, vol. 3, pp. 3–14. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  35. Vig, L., Adams, J.: Multi-robot coalition formation. IEEE Transactions on Robotics 22(4), 637–649 (2006)

    Article  MATH  Google Scholar 

  36. Yang, E., Gu, D.: Multi-robot systems with agent-based reinforcement learning: evolution, opportunities and challenges. International Journal of Modelling, Identification and Control 6(4), 271–286 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dasgupta, P., Cheng, K., Banerjee, B. (2012). Adaptive Multi-robot Team Reconfiguration Using a Policy-Reuse Reinforcement Learning Approach. In: Dechesne, F., Hattori, H., ter Mors, A., Such, J.M., Weyns, D., Dignum, F. (eds) Advanced Agent Technology. AAMAS 2011. Lecture Notes in Computer Science(), vol 7068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27216-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27216-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27215-8

  • Online ISBN: 978-3-642-27216-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics