Skip to main content

Measuring the Weight of Egg with Image Processing and ANFIS Model

  • Conference paper
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7076))

Included in the following conference series:

Abstract

It is clear that the egg is very important in human food basket. But a problem in food processing manufactures is measuring the weight of eggs as real time and it’s difficult. One solution can be by using the camera. In this research we tried to measure the width and length of egg by real time image processing and then design and optimize an ANFIS model to find best relation between image processing outputs and the weight of egg. The correlation coefficient of experimental value for weight of egg and predicted value by ANFIS model is 0.9942. The result is very interesting and this idea is cheap, novel and practical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. United States Department of Agriculture. Egg-Grading Manual. Agriculture Handbook No.75. Agriculture Marketing Service, USDA (2000)

    Google Scholar 

  2. Goodrum, J.W., Elster, R.T.: Machine Vision for Crack Detection in Rotating Eggs. Transactions of the ASAE 35(4), 1323–1328 (1992)

    Article  Google Scholar 

  3. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall Inc. (2004)

    Google Scholar 

  4. Kuchida, K., Fukaya, M., Miyoshi, S., Suzuki, M., Tsuruta, S.: Nondestructive Prediction Method for Yolk: Albumin Ratio in Chicken Eggs by Computer Image Analysis. Poultry Science 78, 909–913 (2000)

    Article  Google Scholar 

  5. Pourreza, H.R., Pourreza, R.S., Fazeli, S., Taghizadeh, B.: Automatic Detection of Eggshell Defects Based on Machine Vision. Journal of Animal and Veterinary Advances 7(10), 1200–1203 (2008)

    Google Scholar 

  6. Dehrouyeh, M.H., Omid, M., Ahmadi, H., Mohtasebi, S.S., Jamzad, M.: Grading and Quality Inspection of Defected Eggs Using Machine Vision. International Journal of Advanced Science and Technology 17, 23–31 (2010)

    Google Scholar 

  7. Narushin, V.G.: Egg Geometry Calculation Using the Measurements of Length and Breadth. Poultry Science 84, 482–484 (2005)

    Article  Google Scholar 

  8. Sabliov, C.M., Bolder, D., Keener, K.M., Farkas, B.E.: Image Processing Method to Determine Surface Area and Volume of Axisymmetric Agricultural Products. International Journal of Food Prop. 5, 641–653 (2002)

    Article  Google Scholar 

  9. Koc, B.: Determination of Watermelon Volume Using Ellipsoid Approximation and Image Processing. Journal of Postharvest Technology 45, 366–371 (2007)

    Article  Google Scholar 

  10. Rashidi, M., Malekiyan, M., Gholami, M.: Egg Volume Determination by Spheroid Approximation and Image Processing. World Applied Sciences Journal 3(4), 590–596 (2008)

    Google Scholar 

  11. Fraile-Ardanuy, J., Zufiria, P.J.: Design and comparison of adaptive power system stabilizers based on neural fuzzy networks and genetic algorithms. Neurocomputing 70, 2902–2912 (2007)

    Article  Google Scholar 

  12. Kiralakis, L., Tsourveloudis, N.C.: Modeling and Optimization of Olive Stone Drying process. In: WSEAS International Conference on Dynamical Systems and Control, Venice, Italy, November 2-4, pp. 240–246 (2005)

    Google Scholar 

  13. Singh, J., Singh, S.: Modelling for tensile strength of friction welded aluminium pipes by ANFIS. Int. J. Intelligent Engineering Informatics 1(1), 3–20 (2010)

    Article  Google Scholar 

  14. Avci, E.: Comparison of wavelet families for texture classification by using wavelet packet entropy adaptive network based fuzzy inference system. Applied Soft Computing 8, 225–231 (2008)

    Article  Google Scholar 

  15. Buragohain, M., Mahanta, C.: A novel approach for ANFIS modelling based on full factorial design. Applied Soft Computing 8, 609–625 (2008)

    Article  Google Scholar 

  16. Ross, T.J.: Fuzzy logic with engineering applications, 2nd edn. John Wiley and Sons Ltd., London (2004)

    MATH  Google Scholar 

  17. Cheng, C.B., Cheng, C.J., Lee, E.S.: Neuro-Fuzzy and Genetic Algorithm in Multiple Response Optimization. Computers and Mathematics with Applications 44, 1503–1514 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ertunc, M., Hosoz, H.: Comparative analysis of an evaporative condenser using artificial neural network and adaptive neuro-fuzzy inference system. International Journal of Refrigeration 3(1), 1426–1436 (2008)

    Article  Google Scholar 

  19. Patel, V.C., Mc Clendon, R.W., Goodrum, W.: Color Computer Vision and Artificial Neural Networks for the Detection of Defects in Poultry Eggs. Artificial Intelligence Review 12, 163–176 (1998)

    Article  MATH  Google Scholar 

  20. Wang, Q.-H., Wen, Y.-X.: Research on the Grading Method of Egg’s Weight Based on BP Neural Network. Hubei Agricultural Sciences (1), 97–99 (2005)

    Google Scholar 

  21. Long, M.-S., He, D.-J., Ning, J.-F.: An integrated apple grading system based on genetic neural network. J. Northwest Sci-Tech University of Agriculture and Foresty 12(6), 1–4 (2001)

    Google Scholar 

  22. Ma, H.M.: Application of BP neural networks in plant taxonomy identification. Agriculture Network Information (12), 1–3 (2006)

    Google Scholar 

  23. Tu, K., Ren, K., Pan, L., Li, H.: A Study of Broccoli Grading System Based on Machine Vision and Neural Networks. In: Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, Harbin, China, August 5-8 (2007)

    Google Scholar 

  24. Ying, L.C., Pan, M.C.: Using adaptive network based fuzzy inference system to forecast regional electricity loads. Energy Conversation and Management 49, 205–211 (2008)

    Article  Google Scholar 

  25. Sengur, A.: Wavelet transform and adaptive neuro-fuzzy inference system for color texture classification. Expert Systems with Applications 34, 2120–2128 (2008)

    Article  Google Scholar 

  26. Ăœbeyli, E.D.: Adaptive neuro-fuzzy inference system employing wavelet coefficients for detection of ophthalmic arterial disorders. Expert Systems with Applications 34, 2201–2209 (2008)

    Article  Google Scholar 

  27. Singh, J., Singh, S.: Multi input single output fuzzy model to predict tensile strength of radial friction welded GI pipes. International Journal of Information and Systems Sciences, Institute for Scientific Computing and Information 4(3), 462–477 (2008)

    MATH  Google Scholar 

  28. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man. Cybern., 665–685 (1993)

    Google Scholar 

  29. Rashidi, M., Gholami, M.: Prediction of egg mass based on geometrical attributes. Agriculture and Biology Journal of North America 2(4), 638–644 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Javadikia, P., Dehrouyeh, M.H., Naderloo, L., Rabbani, H., Lorestani, A.N. (2011). Measuring the Weight of Egg with Image Processing and ANFIS Model. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2011. Lecture Notes in Computer Science, vol 7076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27172-4_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27172-4_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27171-7

  • Online ISBN: 978-3-642-27172-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics