Differential Evolution for Optimizing the Hybrid Filter Combination in Image Edge Enhancement

  • Tirimula Rao Benala
  • Satchidananda Dehuri
  • G. S. Surya Vamsi Sirisetti
  • Aditya Pagadala
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7076)


Image edge enhancement is the art of enhancing the edge of significant objects in an image. The proposed work uses the concept of hybrid filters for edge enhancement whose optimal sequence is to be found by differential evolution. Its unbiased stochastic sampling and bench-mark results in a quite many number of applications ignited us to use for the aforesaid purpose and motivated for further research. The major five mutational variants of differential evolution employing the binomial crossover have been used in the proposed work which and have been tested over both standard images and medical images. Our extensive experimental studies produce encouraging results.


Image edge enhancement hybridized smoothening filter differential evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benela, T.R., Jampala, S.D., Villa, S.H., Konathala, B.: A novel approach to image edge enhancement using artificial bee colony algorithm for hybridized smoothening filters. In: IEEE Conference on BICA, India (2009) ISBN 978-1-4244-5612-3/09 Google Scholar
  2. 2.
    Gonzalez, W.: Digital Image Processing, 2nd edn. Prentice Hall, Englewood Cliffs (2001)Google Scholar
  3. 3.
  4. 4.
    Liu, Z., Zhang, Y., Ning, Z., Zhang, Y., Guan, Y.: Differential Evolution based on Improved Mutation Strategy. In: 2nd International Conference on Computer Engineering and Technology. IEEE (2010) 978-1-4244-6349-7/10Google Scholar
  5. 5.
    Maximiano, M.S., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: A Hybrid Differential Evolution Algorithm to Solve a Real-World Frequency Assignment Problem. In: Proceedings of the International Multi Conference on ISBN Computer Science and Information Technology, pp. 201–205 (2008) ISSN 1896-7094, ISBN 978-83-60810-14-9Google Scholar
  6. 6.
    Ojima, Y., Kirigaya, S., Wakahara, T.: Determining Optimal Filters for Binarization of Degraded Grayscale Characters Using Genetic Algorithms. In: Proceedings of Eighth International Conference on IEEE Document Analysis and Recognition, vol. 2, pp. 555–559 (2005) ISBN 0-7695-2420-6Google Scholar
  7. 7.
    Price, K., Storn, R.: Differential Evolution: A Simple Evolution Strategy for Fast Optimization. Dr. Dobb’s Journal 22(4), 18–24 (1997)zbMATHGoogle Scholar
  8. 8.
    Rao, B.T., Dehuri, S., Dileep, M., Vindhya, A.: Swarm Intelligence for Optimizing Hybridized Smoothing Filter in Image Edge Enhancement. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Dash, S.S. (eds.) SEMCCO 2010. LNCS, vol. 6466, pp. 370–379. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Savakis, A.E.: Adaptive Document Image Thresh-holding Using foreground and Background clustering. In: IEEE Proceedings of International Conference on Image Processing ICIP, vol. 3, pp. 785–789 (1998) ISBN 0-8186-8821-1Google Scholar
  10. 10.
    Zaharie, D.: A Comparative Analysis of Crossover Variants in Differential Evolution. In: Proceedings of the International Multi Conference on Computer Science and Information Technology, pp. 171–181 (2007) ISSN 1896-7094Google Scholar
  11. 11.
    Zhu, G., Chen, Z.: A Differential Evolution Optimization Approach to Solve the Pick-and-Placing Problem. In: Fifth International Conference on Natural Computation (2009) 978-0-7695-3736-8/09, doi:10.1109/ICNC.2009.153Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tirimula Rao Benala
    • 1
  • Satchidananda Dehuri
    • 2
  • G. S. Surya Vamsi Sirisetti
    • 1
  • Aditya Pagadala
    • 1
  1. 1.Anil Neerukonda Institute of Technology and SciencesVisakhapatnamIndia
  2. 2.Department of Information & Communication TechnologyFakir Mohan UniversityBalasoreIndia

Personalised recommendations