Advertisement

Genetic Algorithm Assisted Enhancement in Pattern Recognition Efficiency of Radial Basis Neural Network

  • Prabha Verma
  • R. D. S. Yadava
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7076)

Abstract

The paper presents a feature extraction method for improving pattern classification efficiency of the radial basis function neural network. The principal component analysis in combination with preprocessing by vector autoscaling and dimensional autoscaling has been used to generate two alternate feature vector representations of the objects. A feature fusion scheme is proposed in which the two feature sets are combined by simple concatenation and then allowed to undergo genetic evolution. The fused features are obtained by applying a weighting method based on the prevalence of feature components in the terminal population. The present method of feature extraction in combination with radial basis neural network has been demonstrated to improve the classification rate for nine benchmark datasets analyzed.

Keywords

Genetic algorithm radial basis function neural network feature extraction pattern recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, ch. 1. Academic, San Diego (2003)zbMATHGoogle Scholar
  2. 2.
    Kotsiantis, S.B.: Supervised Machine Learning: A Review of Classification Techniques. Informatica 31, 249–268 (2007)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Jain, A.K.: Statistical Pattern Recognition: A Review. IEEE Trans. Pattern Anal Machine Intelligence 22(1), 4–37 (2000)CrossRefGoogle Scholar
  4. 4.
    Gutierrez-Osuna, R.: Pattern Analysis for Machine Olfaction: A Review. IEEE Sensors J. 2(3), 189–202 (2002)CrossRefGoogle Scholar
  5. 5.
    Osuna, R.G., Nagle, H.T.: A Method for Evaluating Data Preprocessing Techniques for Odor Classification with an Array of Gas Sensors. IEEE Trans. Syst. Man Cybern. B 29(5), 626–632 (1999)CrossRefGoogle Scholar
  6. 6.
    Somvanshi, D., Yadava, R.D.S.: Boosting Principal Component Analysis by Genetic Algorithm. Defence Science Journal 60, 392–398 (2010)CrossRefGoogle Scholar
  7. 7.
    Zohdy, M.A., Loh, N., Liu, J.: Application of Maximum Likelihood Identification with Multisensor Fusion to Stochastic Systems. In: Proceedings of American Control Conference, Pennsylvania, pp. 411–416 (1989)Google Scholar
  8. 8.
    Khan, A.A., Zohdy, M.A.: A Genetic Algorithm for Selection of Noisy Sensor Data in Multisensor Data Fusion. In: Proceedings of American Control Conference, Albuquerque, pp. 2256–2262 (1997)Google Scholar
  9. 9.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, Section 2.1. Wiley & Sons, Hoboken (2006)Google Scholar
  10. 10.
    Pardo, M., Sberveglieri, G.: Coffee Analysis with an Electronic Nose. IEEE Trans. Instrum. Measur. 51, 1334–1339 (2002), http://sensor.ing.unibs.it/_people/pardo/dataset.html CrossRefGoogle Scholar
  11. 11.
    Rose-Pehrson, S.L., Lella, D.D., Grate, J.W.: Smart Sensor System and Method Using Surface Acoustic Wave Vapor Sensor Array and Pattern Recognition for Selective Trace Organic Vapor Detection. U.S. Patent 5469369 (1995)Google Scholar
  12. 12.
    Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA, http://archive.ics.uci.edu/ml/datasets.html
  13. 13.
    Jha, S.K., Yadava, R.D.S.: Denoising by Singular Value Decomposition and Its Application to Electronic Nose Data Processing. IEEE Sensors J. 11, 35–44 (2011)CrossRefGoogle Scholar
  14. 14.
    Ling, C.: Stream data classification using improved fisher discriminate analysis. J. Computers 4, 208–214 (2009)Google Scholar
  15. 15.
    Moradian, M., Baraani, A.: KNNBA: K- Nearest-Neighbor Based-Association Algorithm. J. Theor. Appl. Informat. Technol. 6, 123–129 (2009)Google Scholar
  16. 16.
    Autio, L., Juhola, M., Laurikkala, J.: On the Neural Network Classification of Medical Data and an Endeavor to Balance Non-Uniform Data Sets with Artificial Data Extension. Computers in Biology and Medicine 37, 388–397 (2007)CrossRefGoogle Scholar
  17. 17.
    Frank, E., Hall, M.: A Simple Approach to Ordinal Classification. In: De Raedt, L.H., Flach, P. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 145–156. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Prabha Verma
    • 1
  • R. D. S. Yadava
    • 1
  1. 1.Department of PhysicsBanaras Hindu UniversityVaranasiIndia

Personalised recommendations