Advertisement

Constrained Function Optimization Using PSO with Polynomial Mutation

  • Tapas Si
  • Nanda Dulal Jana
  • Jaya Sil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7076)

Abstract

Constrained function optimization using particle swarm optimization (PSO) with polynomial mutation is proposed in this work. In this method non-stationary penalty function approach is adopted and polynomial mutation is performed on global best solution in PSO. The proposed method is applied on 6 benchmark problems and obtained results are compared with the results obtained from basic PSO. The experimental results show the efficiency and effectiveness of the method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization Method for Constrained Optimization Problems. In: ACM Symposium on Applied Computing - SAC (2002)Google Scholar
  2. 2.
    Higashi, N., lba, H.: Particle Swarm Optimization with Gaussian Mutation. In: IEEE Swarm Intelligence Symposium, Indianapolis, pp. 72–79 (2003)Google Scholar
  3. 3.
    Wang, H., Liu,Y., Li,C.H., Zeng, S.Y.: A hybrid particle swarm algorithm with Cauchy mutation. In: Proc. of IEEE Swarm Intelligence Symposium, pp. 356–360 (2007)Google Scholar
  4. 4.
    Stacey, A., Jancic, M., Grundy, I.: Particle swarm optimization with mutation. In: Proc. Congr. Evol. Comput., pp. 1425–1430 (2003)Google Scholar
  5. 5.
    Tang, J., Zhao, X.: Particle Swarm Optimization with Adaptive Mutation. In: WASE International Conference on Information Engineering (2009)Google Scholar
  6. 6.
    Wu, X., Zhong, M.: Particle Swarm Optimization Based on Power Mutation. In: ISECS International Colloquium on Computing, Communication, Control, and Management (2009)Google Scholar
  7. 7.
    Saha, A., Datta, R., Deb, K.: Hybrid Gradient Projection based Genetic Algorithms for Constrained Optimization. In: IEEE Congress on Evolutionary Computation - CEC, pp. 1–8 (2010)Google Scholar
  8. 8.
    Mallipeddi, R., Suganthan, P.: Problem Definitions and Evolution Criteria for the CEC 2010 Competition on Constrained Real-Parameter Optimization, Technical Report, Nayang Technological University, Singapore (2010)Google Scholar
  9. 9.
    Raghuswanshi, M.M., Kakde, O.G.: Survey on multiobjective evolutionary and real code genetic algorithms Complexity. International 11 (2005)Google Scholar
  10. 10.
    Gao, Y., Ren, Z.: Adaptive Particle Swarm Optimization Algorithm With Genetic Mutation Operation. In: Third International Conference on Natural Computation (ICNC 2007) (2007)Google Scholar
  11. 11.
    Li, C., Liu, Y., Zhou, A., Kang, L., Wang, H.: A Fast Particle Swarm Optimization Algorithm with Cauchy Mutation and Natural Selection Strategy. In: Kang, L., Liu, Y., Zeng, S. (eds.) ISICA 2007. LNCS, vol. 4683, pp. 334–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley and Sons (2001)Google Scholar
  13. 13.
    Esquivel, S.C., Coello, Coello, C.A.: On the use of particle swarm optimization with multimodal functions. In: Proc. Congr. Evol. Comput., pp. 1130–1136 (2003)Google Scholar
  14. 14.
    Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proc. IEEE World Congr. Comput. Intell., pp. 69–73 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tapas Si
    • 1
  • Nanda Dulal Jana
    • 1
  • Jaya Sil
    • 2
  1. 1.Department of Information TechnologyNational Institute of TechnologyDurgapurIndia
  2. 2.Department of Computer Science and TechnologyBESUIndia

Personalised recommendations