Skip to main content

Introduction to Random Tug-of-War Games and PDEs

  • Chapter
  • First Online:
Book cover Regularity Estimates for Nonlinear Elliptic and Parabolic Problems

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2045))

  • 1496 Accesses

Abstract

The fundamental contributions of Kolmogorov, Ito, Kakutani, Doob, Hunt, Lévy, and many others have shown the profound and powerful connection between classical linear potential theory and probability theory. The idea behind the classical interplay is that harmonic functions and martingales share a common cancelation property that can be expressed by using mean value properties. In these lectures, we will see how this approach turns out to very useful in the nonlinear theory as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Alessandrini, Giovanni critical points of solutions of elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14(2), 229–256 (1988)

    Google Scholar 

  2. M. Crandall and J. Zhang, Another way to say harmonic, Trans. Am. Math. Soc. 355, 241–263 (2002)

    Article  MathSciNet  Google Scholar 

  3. P. Juutinen, P. Lindqvist, J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear elliptic equation, SIAM J. Math. Anal. 33, 699–717 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Juutinen, P. Lindqvist, J. Manfredi, The -eigenvalue problem, Arch. Ration. Mech. Anal. 148 89–105 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Kaufman, J.G. Llorente, J.M. Wu, Nonlinear harmonic measures on trees, Ann. Acad. Sci. Fenn. Math. 28, 279–302 (2003)

    MathSciNet  MATH  Google Scholar 

  6. R. Kohn, S. Serfaty, A deterministic-control-based approach to fully nonlinear parabolic and elliptic equations, Comm. Pure Appl. Math. 63(10), 1298–1350 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Lindqvist, J. Manfredi, Note on a remarkable superposition for a nonlinear equation, Proc. Am. Math. Soc. 136, 229–248 (2008)

    Article  MathSciNet  Google Scholar 

  8. P. Lindqvist, J. Manfredi, Viscosity solutions of the evolutionary p-Laplace equation, Differ. Integr. Equat. 20, 1303–1319 (2007)

    MathSciNet  MATH  Google Scholar 

  9. J.G. Llorente, J. Manfredi, J.M. Wu, p-harmonic measure is not subadditive, Annalli de della Scuola Normale Superiore di Pisa, Classe di Scienze IV(5), 357–373 (2005)

    Google Scholar 

  10. J. Manfredi, p-harmonic functions in the plane, Proc. Am. Math. Soc. 103(2), 473–479 (1988)

    MathSciNet  MATH  Google Scholar 

  11. J.J. Manfredi, M. Parviainen, J.D. Rossi, An asymptotic mean value characterization for p-harmonic functions. Proc. Am. Math. Soc., 258, 713–728 (2010)

    MathSciNet  Google Scholar 

  12. J.J. Manfredi, M. Parviainen, J.D. Rossi, On the definition and properties of p-harmonious functions. To appear in Ann. Sc. Norm. Super. Pisa Cl. Sci.

    Google Scholar 

  13. J. Manfredi, M. Parviainen, J. Rossi, Dynamic programming principle for tug-of-war games with noise. To appear in ESAIM:COCV

    Google Scholar 

  14. A.P. Maitra, W.D. Sudderth, Discrete gambling and stochastic games. Appl. Math. 32, Springer-Verlag, 1996

    Google Scholar 

  15. Y. Peres, G. Pete, S. Somersielle, Biased tug-of-war, the biased infinity Laplacian and comparison with exponential cones, Calc. Var. Partial Differential Equations 38(3), 541–564 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Peres, O. Schramm, S. Sheffield, D. Wilson, Tug-of-war and the infinity Laplacian, J. Am. Math. Soc. 22, 167–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Peres, S. Sheffield, Tug-of-war with noise: a game theoretic view of the p-Laplacian, Duke Math. J. 145(1), 91–120 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Sviridov, Elliptic Equations in Graphs via Stochastic Games, University of Pittsburgh 2010 doctoral dissertation

    Google Scholar 

  19. D.W. Stroock, S.R.S. Varadan, Multidimensional Diffusion Processes, Grundlehren der Mathematische Wissenschaften 233, Springer-Verlag, 1979

    Google Scholar 

  20. C.T. Ionescu Tulcea, Measures dans les espaces produits, Atti. Acad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. 7(8), 208–211 (1949)

    MathSciNet  Google Scholar 

  21. S.R.S. Varadan, Probability Theory, Courant Lecture Notes in Mathematics 7, New York University, 2000

    Google Scholar 

  22. T. Wolff, Gap series constructions for the p-Laplacian, J. D’Analyse Mathématique 102, 371–394 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan J. Manfredi .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manfredi, J.J. (2012). Introduction to Random Tug-of-War Games and PDEs. In: Regularity Estimates for Nonlinear Elliptic and Parabolic Problems. Lecture Notes in Mathematics(), vol 2045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27145-8_3

Download citation

Publish with us

Policies and ethics