Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2045))

Abstract

The modern theory of viscosity solutions, created by Lions, Crandall, Evans, Ishii, Jensen, and others, relies on the appropriately defined viscosity supersolutions, which are merely lower semicontinuous functions by their definition. For second order equations, these are often the same functions as those supersolutions that are encountered in potential theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Boccardo, A. Dall’Aglio, T. Gallouët, L. Orsina, Nonlinear parabolic equations with measure data. J. Funct. Anal. 147, 237–258 (1997)

    Google Scholar 

  2. M. Brelot, Éléments de la Théorie Classique du Potential, 2e édn. Paris, 1961

    Google Scholar 

  3. M. Crandall, J. Zhang, Another way to say harmonic. Trans. Am. Math. Soc. 355, 241–263 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. H.-J. Choe, A regularity theory for a more general class of quasilinear parabolic partial differential equations and variational inequalities. Differ. Integr. Equat. 5, 915–944 (1992)

    MathSciNet  MATH  Google Scholar 

  5. M. Crandall, H. Ishii, P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. E. DiBenedetto, Degenerate Parabolic Equations (Springer, Berlin, 1993)

    Book  MATH  Google Scholar 

  7. L. Evans, R. Gariepy, Measure Theory and Fine Propeties of Functions (CRC Press, Boca Raton, 1992)

    Google Scholar 

  8. E. Giusti, Metodi diretti nel calcolo delle variazioni (Unione Matematica Italiana, Bologna, 1994)

    MATH  Google Scholar 

  9. E. Giusti, Direct Methods in the Calculus of Variations (World Scientific, Singapore, 2003)

    Book  MATH  Google Scholar 

  10. P. Juutinen, P. Lindqvist, J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation. SIAM J. Math. Anal. 33, 699–717 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Kamin, J.L. Vasquez, Fundamental solutions and asymptotic behaviour for the p-Laplacian equation. Revista Mathematica Iberoamericana 4, 339–354 (1988)

    Article  MATH  Google Scholar 

  12. T. Kilpeläinen, P. Lindqvist, On the Dirichlet boundary value problem for a degenerate parabolic equation, SIAM J. Math. Anal. 27, 661–683 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Kilpeläinen, J. Malý, Degenerate elliptic equations with measure data and nonlinear potentials. Annali della Scuola Normale Superiore di Pisa Cl. Sci. (4) 19, 591–613 (1992)

    Google Scholar 

  14. J. Kinnunen, P. Lindqvist, Summability of semicontinuous supersolutions to a quasilinear parabolic equation. Annali della Scuola Normale Superiore di Pisa Cl. Sci. (5) 4, 59–78 (2005)

    Google Scholar 

  15. J. Kinnunen, P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation. Annali di Matematica Pura ed Applicata (4) 185, 411–435 (2006)

    Google Scholar 

  16. J. Kinnunen, T. Lukkari, M. Parviainen, An existence result for superparabolic functions. J. Funct. Anal. 258, 713–728 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Koike, in A Beginner’s Guide to the Theory of Viscosity Solutions. MSJ Memoirs, vol. 13 (Mathematical Society of Japan, Tokyo, 2004)

    Google Scholar 

  18. T. Kuusi, Lower semicontinuity of weak supersolutions to nonlinear parabolic equations. Differ. Integr. Equat. 22, 1211–1222 (2009)

    MathSciNet  MATH  Google Scholar 

  19. J. Lewis, On very weak solutions of certain elliptic systems. Comm. Part. Differ. Equat. 18, 1517–1537 (1993)

    Google Scholar 

  20. P. Lindqvist, On the definition and properties of p-superharmonic functions. Journal für die Reine und Angewandte Mathematik (Crelles Journal) 365, 67–79 (1986)

    MathSciNet  MATH  Google Scholar 

  21. P. Lindqvist, Notes on the p-Laplace equation. University of Jyväskylä, Report 102 (2006)

    Google Scholar 

  22. P. Lindqvist, J. Manfredi, Viscosity supersolutions of the evolutionary p-Laplace equation. Differ. Integr. Equat. 20, 1303–1319 (2007)

    MathSciNet  MATH  Google Scholar 

  23. J. Maly, W. Ziemer, in Fine Regularity of Solutions of Elliptic Partial Differential Equations. Math. Surveys Monogr., vol. 51 (AMS, Providence, 1998)

    Google Scholar 

  24. J. Michael, W. Ziemer, Interior regularity for solutions to obstacle problems. Nonlinear Anal. 10, 1427–1448 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations. Appl. Math. 51, 355–426 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Serrin, Pathological solutions of elliptic differential equations. Annali della Scuola Normale Superiore di Pisa Cl. Sci. (3) 18, 385–387 (1964)

    Google Scholar 

  27. N. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math. 20, 721–747 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  28. N. Trudinger, Pointwise estimates and quasilinear parabolic equations. Comm. Pure Appl. Math. 21, 205–226 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Urbano, The Method of Intrinsic Scaling: A Systematic Approach to Regularity for Degenerate and Singular PDEs. Lecture Notes in Mathematics, vol. 1930 (Springer, Berlin, 2008)

    Google Scholar 

  30. Z. Wu, J. Zhao, J. Yin, H. Li, Non-linear Diffusion Equations (World Scientific, Singapore, 2001)

    Book  Google Scholar 

  31. C. Yazhe, Hölder continuity of the gradient of the solutions of certain degenerate parabolic equations. Chin. Ann. Math. Ser. B 8(3), 343–356 (1987)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lindqvist .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lindqvist, P. (2012). Regularity of Supersolutions. In: Regularity Estimates for Nonlinear Elliptic and Parabolic Problems. Lecture Notes in Mathematics(), vol 2045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27145-8_2

Download citation

Publish with us

Policies and ethics