Skip to main content

A Model of Hierarchically Consistent Control of Nonlinear Dynamical Systems

  • Conference paper
  • 1577 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 256))

Abstract

Most of the real modern systems are complex, nonlinear, and large-scale. A natural approach for reducing the complexity of large scale systems places a hierarchical structure on the system architecture. In hierarchical control models, the notion of consistency is much important, as it ensures the implementation of high-level objectives by the lower level systems. In this work, we present a model for synthesis of hierarchically consistent control systems for complex nonlinear multidimensional and multicoupled dynamical systems, using invariant manifold theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mesarovic, M.D.: Theory of Hierarchical, Multilevel, Systems. In: Mathematics in Science and Engineering, vol. 68. Academic Press, New York (1970)

    Google Scholar 

  2. Girard, A., Lafferriere, G., Sastry, S.: Hierarchically Consistent Control Systems. IEEE Trans. Automatic Control 45, 1144–1160 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lollini, P., Bondavalli, A., Di Giandomenico, F.: A Modeling Methodology for Hierarchical Control System and its Application. J. Braz. Comp. Soc. 10, 57–69 (2005)

    Article  Google Scholar 

  4. Bagdasaryan, A.: Discrete Dynamic Simulation Models and Technique for Complex Control Systems. Simulation Modelling Practice and Theory 19, 1061–1087 (2011)

    Article  Google Scholar 

  5. Bagdasaryan, A., Kim, T.-H.: Dynamic Simulation and Synthesis Technique for Complex Control Systems. In: Ślęzak, D., Kim, T.-h., Stoica, A., Kang, B.-H. (eds.) CA 2009. CCIS, vol. 65, pp. 15–27. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Bagdasaryan, A.G.: Mathematical and Computer Tools of Discrete Dynamic Modeling and Analysis of Complex Systems in Control Loop. Int. J. Math. Models Methods Appl. Sci. 2, 82–95 (2008)

    Google Scholar 

  7. Mahmoud, M.S.: Multilevel Systems Control and Applications: A Survey. IEEE Transactions on System, Man, and Cybernetics 7(3), 125–143 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Park, J., Obeysekera, J., VanZee, R.: Multilayer Control Hierarchy for Water Management Decisions in Integrated Hydrologic Simulation Model. Journal of Water Resources Planning and Management 133(2), 117–125 (2007)

    Article  Google Scholar 

  9. Singh, M.G., Hindi, K.: A Multilevel Multilayer Framework for Manufacturing Control. Journal of Intelligent and Robotic Systems 4, 75–93 (1991)

    Article  Google Scholar 

  10. Tatjewski, P.: Advanced Control and On-line Process Optimization in Multilayer Structures. Annual Reviews in Control 32, 71–85 (2008)

    Article  Google Scholar 

  11. Boskovic, J.D., Prasanth, R., Mehra, R.K.: A Multilayer Control Architecture for Unmanned Aerial Vehicles. In: Proc. of the American Control Conference, vol. 3, pp. 1825–1830 (2002)

    Google Scholar 

  12. Josić, K.: Invariant Manifolds and Synchronization of Coupled Dynamical Systems. Phys. Rev. Lett. 80, 3053–3056 (1998)

    Article  MATH  Google Scholar 

  13. Kwong, C.P., Zheng, Y.-K.: Aggregation on Manifolds. Int. J. Systems Sci. 17(4), 581–589 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, Y.: The Invariant Manifold Method and the Controllability of Nonlinear Control System. Appl. Math. Mech. 11(21), 1320–1330 (2010)

    MATH  Google Scholar 

  15. Karagiannis, D., Astolfi, A.: Non-linear and Adaptive Flight Control of Autonomous Aircraft Using Invariant Manifolds. J. Aerospace Engineering 224(4), 403–415 (2010)

    Google Scholar 

  16. Yu, X., Chen, G., Xia, Y., Song, Y., Cao, Z.: An Invariant-Manifold-Based Method for Chaos Control. IEEE Trans. Circuits and Systems 48(8), 930–937 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tian, Y.-P., Yu, X.: Adaptive Control of Chaotic Dynamical Systems Using Invariant Manifold Approach. IEEE Trans. Circuits and Systems 47(10), 1537–1542 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Astolfi, A., Ortega, R.: Invariant Manifolds, Asymptotic Immersion and the (Adaptive) Stabilization of Nonlinear Systems. In: Zinober, A., Owens, D. (eds.) Nonlinear and Adaptive Control. LNCIS, vol. 281, pp. 1–20. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Zhong, H., Wonham, W.M.: On the Consistency of Hierarchical Supervision in Discrete-Event Systems. IEEE Trans. Automatic Control 35, 1125–1134 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nijmeijer, H., van der Schaft, A.: Nonlinear Dynamical Control Systems. Springer, New York (1990)

    Book  MATH  Google Scholar 

  21. Jurdjevic, V.: Geometric Control Theory. Cambridge University Press (1997)

    Google Scholar 

  22. Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern Geometry. Springer, New York (1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bagdasaryan, A.G., Kim, Th. (2011). A Model of Hierarchically Consistent Control of Nonlinear Dynamical Systems. In: Kim, Th., Adeli, H., Stoica, A., Kang, BH. (eds) Control and Automation, and Energy System Engineering. CES3 CA 2011 2011. Communications in Computer and Information Science, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-26010-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-26010-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-26009-4

  • Online ISBN: 978-3-642-26010-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics