Skip to main content

Predicting Arsenic Concentration in Rice Plants from Hyperspectral Data Using Random Forests

  • Conference paper
Advances in Multimedia, Software Engineering and Computing Vol.1

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 128))

Abstract

Accurate prediction of Arsenic concentration is important for food safety and precision farming. We explore the feasibility of predicting Arsenic concentration in rice plants from hyperspectral data using random forests (RF) in the Arsenic polluted farm lands. Canopy spectral measurements from rice plants were collected using ASD field spectrometer in Suzhou, Jiangsu Province. Rice plants were collected for chemical analysis of Arsenic concentration. Prediction of Arsenic concentration was achieved by a random forests approach. The results show that the random forests approach achieved an R 2 value of 0.84 and an MSE value of 3.97. The results indicate that it is possible to predict concentration of Arsenic in rice plants from hyperspectral data using random forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huang, S.S., Liao, Q.L., Hua, M., et al.: Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. J. Chemosphere. 67, 2148–2155 (2007)

    Article  Google Scholar 

  2. Mysliwa, K.P., Strzalka, K.: Influence of metals on biosynthesis of photosynthetic pigments. In: Prasad, M.N.V., Strzalka, K. (eds.) Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants, pp. 201–302. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  3. Clevers, J.G.P.W.: Application of the WDVI in estimating LAI at the generative stage of barley. J. ISPRS. J. Photogramm. 46, 37–41 (1991)

    Article  Google Scholar 

  4. Schaepman, M.E., Koetz, B., Strub, G.S., Itten, K.I.: Spectrodirectional remote sensing for the improved estimation of biophysical and -chemical variables: two case studies. J. Int. J. Appl. Earth. Obs. 6, 271–282 (2005)

    Article  Google Scholar 

  5. Imanishi, J., Nakayama, A., Suzuki, Y., Imanishi, A., Ueda, N., Morimoto, Y., Yoneda, M.: Nondestructive determination of leaf chlorophyll content in two flowering cherries using reflectance and absorptance spectra. J. Landscape. Ecol. Eng. 6, 219–234 (2010)

    Article  Google Scholar 

  6. Tian, Y.C., Yao, X., Yang, J., Cao, W.X., Hannaway, Y., Zhu, Y.: Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance. J. Field. Crop. Res. 120, 299–310 (2011)

    Article  Google Scholar 

  7. Bannari, A., Khurshid, K.S., Staenz, K., Schwarz, J.W.: A Comparison of Hyperspectral Chlorophyll Indices for Wheat Crop Chlorophyll Content Estimation Using Laboratory Reflectance Measurements. J. IEEE. T. Geosci.Remotes. 41, 6770–6775 (2007)

    Google Scholar 

  8. Cheng, T., Rivard, B.W., Azofeifa, A.S.: Spectroscopic determination of leaf water content using continuous wavelet analysis. J. Remote. Sens. Environ. 2, 659–670 (2011)

    Article  Google Scholar 

  9. Danson, F.M., Steven, M.D., Malthus, T.J., Clark, J.A.: High-spectral resolution data for determining leaf water content. J. Int. J. Remote. Sens. 13, 461–467 (1992)

    Article  Google Scholar 

  10. Dunagan, S.C., Gilmore, M.S., Varekamp, J.C.: Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rapa P.). J. Environ. Pollut. 148, 301–311 (2007)

    Article  Google Scholar 

  11. Franke, J., Mewes, T., Menz, G.: In Requirements on spectral resolution of remote sensing data for crop stress detection. In: Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Cape Town, South Africa, Jul 13-17, pp. I–184–I–187 (2009)

    Google Scholar 

  12. Naumann, J.C., Anderson, J.E., Young, D.R.: Remote detection of plant physiological responses to TNT soil contamination. J. Plant. Soil. 329, 239–248 (2010)

    Article  Google Scholar 

  13. Carter, G.A.: Responses of leaf spectral reflectance to plant stress. J. Am. J. Bot. 80, 239–243 (1993)

    Article  Google Scholar 

  14. Breiman, L.: Random forests. J. Machine Learning 45, 5–32 (2002)

    Article  Google Scholar 

  15. Agricultural Chemistry Committee of China, Conventional Methods of Soil and Agricultural Chemistry Analysis, Science Press, Beijing (in Chinese) (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lv, J., Liu, X. (2011). Predicting Arsenic Concentration in Rice Plants from Hyperspectral Data Using Random Forests. In: Jin, D., Lin, S. (eds) Advances in Multimedia, Software Engineering and Computing Vol.1. Advances in Intelligent and Soft Computing, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25989-0_96

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25989-0_96

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25988-3

  • Online ISBN: 978-3-642-25989-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics