Skip to main content

Representing Belief Function Knowledge with Graphical Models

  • Conference paper
Knowledge Science, Engineering and Management (KSEM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7091))

Abstract

Belief function theory is an appropriate framework to model different forms of knowledge including probabilistic knowledge. One simple and efficient way to reason under uncertainty, is the use of compact graphical models, namely directed acyclic graphs. Therefore naturally, a question crosses the mind: If we deal with Bayesian belief knowledge does the network collapse into a Bayesian network? This paper attempts to answer this question by analyzing different forms of belief function networks defined with conditional beliefs defined either with a unique conditional distribution for all parents or a single conditional distribution for each single parent. We also propose a new method for the deconditionalization process to compute the joint distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben Amor, N., Benferhat, S.: Graphoid properties of qualitative possibilistic independence. International Journal of Uncertainty, Fuzziness and Knowledge-Based 13, 59–96 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben Yaghlane, B., Mellouli, K.: Inference in directed evidential networks based on the transferable belief model. Int. J. Approx. Reasoning 48, 399–418 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benferhat, S., Smaoui, S.: Hybrid possibilistic networks. Int. J. Approx. Reasoning 44(3), 224–243 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  5. Dubois, D., Denoeux, T.: Statistical inference with belief functions and possibility measures: A discussion of basic assumptions. Combining Soft Computing and Statistical Methods in Data Analysis 77, 217–225 (2010)

    Article  Google Scholar 

  6. Laâmari, W., Ben Yaghlane, B., Simon, C.: Comparing Evidential Graphical Models for Imprecise Reliability. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 191–204. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Lewis, D.: Probabilities of conditionals and conditional probabilities. Philosophical Review 85, 297–315 (1976)

    Article  Google Scholar 

  8. Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann Publishers (1988)

    Google Scholar 

  9. Shafer, G.: A Mathematical Theory of Evidence. Princeton Univ. Press, Princeton (1976)

    MATH  Google Scholar 

  10. Shenoy, P.P.: Valuation networks and conditional independence. In: Heckerman, D., Mamdani, A. (eds.) Uncertainty in Artificial Intelligence, vol. 93, pp. 191–199. Morgan Kaufmann, San Francisco (1993)

    Chapter  Google Scholar 

  11. Simon, C., Weber, P., Evsukoff, A.: Bayesian networks inference algorithm to implement dempster shafer theory in reliability analysis. Reliability Engineering and System Safety 93, 950–963 (2008)

    Article  Google Scholar 

  12. Smets, P.: Un modèle mathématico-statistique simulant le processus du diagnostic médical. Ph.d. thesis, Université Libre de Bruxelles (1978)

    Google Scholar 

  13. Smets, P.: Resolving misunderstandings about belief functions. Int. J. Approx. Reasoning 6(3), 321–344 (1992)

    Article  MATH  Google Scholar 

  14. Smets, P.: Belief functions: The disjunctive rule of combination and the generalized bayesian theorem. Int. J. Approx. Reasoning 9(1), 1–35 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xu, H., Smets, P.: Reasoning in evidential networks with conditional belief functions. Int. J. Approx. Reasoning 14, 155–185 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boukhris, I., Benferhat, S., Elouedi, Z. (2011). Representing Belief Function Knowledge with Graphical Models. In: Xiong, H., Lee, W.B. (eds) Knowledge Science, Engineering and Management. KSEM 2011. Lecture Notes in Computer Science(), vol 7091. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25975-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25975-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25974-6

  • Online ISBN: 978-3-642-25975-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics