Skip to main content

Approximation of Markov Jump Processes by Diffusions

  • Chapter
  • First Online:
Book cover Inference for Diffusion Processes
  • 1949 Accesses

Abstract

Diffusion processes enable realistic and convenient modelling of dynamic systems. They typically arise as approximations of exact but computationally expensive individual-based stochastic models. However, the correct derivation of an appropriate diffusion approximation is often complicated, and hence their utilisation is not widely spread in the applied sciences. Instead, practitioners often favour rather unrealistic deterministic models and their relatively simple analysis. This chapter motivates the application of diffusion approximations and explains their correct derivation. It reviews and develops different approaches and points out differences and correspondences between them. All methods are formulated for multi-dimensional processes and extended to an even more general framework where systems are characterised by multiple size parameters. The chapter addresses mathematicians who are interested in the theory of diffusion approximations and practitioners who wish to apply diffusion models for their specific problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen L (2003) An introduction to stochastic processes with applications to biology. Pearson Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • Alonso D, McKane A, Pascual M (2007) Stochastic amplification in epidemics. J R Soc Interface 4:575–582

    Article  Google Scholar 

  • Anderson R, May R (1991) Infectious diseases of humans. Oxford University Press, Oxford

    Google Scholar 

  • Andersson H, Britton T (2000) Stochastic epidemic models and their statistical analysis. Lecture notes in statistics, vol 151. Springer, New York

    Google Scholar 

  • Arnold L (1973) Stochastische Differentialgleichungen. Oldenbourg, München

    MATH  Google Scholar 

  • Bailey N (1975) The mathematical theory of infectious diseases, 2nd edn. Charles Griffin, London

    MATH  Google Scholar 

  • Barbour A (1972) The principle of the diffusion of arbitrary constants. J Appl Probab 9:519–541

    Article  MathSciNet  MATH  Google Scholar 

  • Barbour A (1974) On a functional central limit theorem for Markov population processes. Adv Appl Probab 6:21–39

    Article  MathSciNet  MATH  Google Scholar 

  • Barbour A (1975a) The asymptotic behaviour of birth and death and some related processes. Adv Appl Probab 7:28–43

    Article  MathSciNet  MATH  Google Scholar 

  • Barbour A (1975b) The duration of a closed stochastic epidemic. Biometrika 62:477–482

    Article  MathSciNet  MATH  Google Scholar 

  • Barbour A (1975c) A note on the maximum size of a closed epidemic. J R Stat Soc Ser B 37:459–460

    MathSciNet  MATH  Google Scholar 

  • Billingsley P (1968) Convergence of probability measures. Wiley, New York

    MATH  Google Scholar 

  • Bouchaud JP, Cont R (1998) A Langevin approach to stock market fluctuations and crashes. Eur Phys J B 6:543–550

    Article  Google Scholar 

  • Braumann C (2007) Itô versus Stratonovich calculus in random population growth. Math Biosci 206:81–107

    Article  MathSciNet  MATH  Google Scholar 

  • Busenberg S, Martelli M (1990) Differential equations models in biology, epidemiology and ecology. Lecture notes in biomathematics, vol 92. Springer, Berlin

    Google Scholar 

  • Capasso V, Morale D (2009) Stochastic modelling of tumour-induced angiogenesis. J Math Biol 58:219–233

    Article  MathSciNet  MATH  Google Scholar 

  • Chaturvedi S, Gardiner C (1978) The Poisson representation. II. Two-time correlation functions. J Stat Phys 18:501–522

    MathSciNet  Google Scholar 

  • Chen WY, Bokka S (2005) Stochastic modeling of nonlinear epidemiology. J Theor Biol 234:455–470

    Article  MathSciNet  Google Scholar 

  • Clancy D, French N (2001) A stochastic model for disease transmission in a managed herd, motivated by Neospora caninum amongst dairy cattle. Math Biosci 170:113–132

    Article  MathSciNet  MATH  Google Scholar 

  • Clancy D, O’Neill P, Pollett P (2001) Approximations for the long-term behavior of an open-population epidemic model. Methodol Comput Appl Probab 3:75–95

    Article  MathSciNet  MATH  Google Scholar 

  • Daley D, Gani J (1999) Epidemic modelling: an introduction. Cambridge studies in mathematical biology, vol 15. Cambridge University Press, Cambridge

    Google Scholar 

  • Daley D, Kendall D (1965) Stochastic rumours. IMA J Appl Math 1:42–55

    Article  MathSciNet  Google Scholar 

  • Daniels H (1974) The maximum size of a closed epidemic. Adv Appl Probab 6:607–621

    Article  MathSciNet  MATH  Google Scholar 

  • de la Lama M, Szendro I, Iglesias J, Wio H (2006) Van Kampen’s expansion approach in an opinion formation model. Eur Phys J B 51:435–442

    Article  Google Scholar 

  • Drummond P, Gardiner C, Walls D (1981) Quasiprobability methods for nonlinear chemical and optical systems. Phys Rev A 24:914–926

    Article  MathSciNet  Google Scholar 

  • Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523

    Article  Google Scholar 

  • Elf J, Ehrenberg M (2003) Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. Genome Res 13:2475–2484

    Article  Google Scholar 

  • Ethier S, Kurtz T (1986) Markov processes. Characterization and convergence. Wiley, New York

    Book  MATH  Google Scholar 

  • Ewens W (1963) Numerical results and diffusion approximations in a genetic process. Biometrika 50:241–249

    MathSciNet  MATH  Google Scholar 

  • Feller W (1951) Diffusion processes in genetics. In: Proceedings of the second Berkeley symposium on mathematical statistics and probability. University of California Press, Berkeley, pp 227–246

    Google Scholar 

  • Ferm L, Lötstedt P, Hellander A (2008) A hierarchy of approximations of the master equation scaled by a size parameter. J Sci Comput 34:127–151

    Article  MathSciNet  MATH  Google Scholar 

  • Gardiner C (1983) Handbook of stochastic methods. Springer, Berlin/Heidelberg

    Book  MATH  Google Scholar 

  • Gardiner C, Chaturvedi S (1977) The Poisson representation. I. A new technique for chemical master equations. J Stat Phys 17:429–468

    MathSciNet  Google Scholar 

  • Gibson M, Mjolsness E (2001) Modeling of the activity of single genes. In: Bolouri H, Bower J (eds) Computational modeling of genetic and biochemical networks. Lecture notes in computer science, vol 4699. MIT, Cambridge, pp 1–48

    Google Scholar 

  • Gillespie D (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22:403–434

    Article  MathSciNet  Google Scholar 

  • Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361

    Article  Google Scholar 

  • Gillespie D (1980) Approximating the master equation by Fokker-Planck-type equations for single-variable chemical systems. J Chem Phys 72:5363–5370

    Article  Google Scholar 

  • Gitterman M, Weiss G (1991) Some comments on approximations to the master equation. Phys A 170:503–510

    Article  Google Scholar 

  • Goel N, Richter-Dyn N (1974) Stochastic models in biology. Academic, New York

    Google Scholar 

  • Golightly A, Wilkinson D (2005) Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics 61:781–788

    Article  MathSciNet  MATH  Google Scholar 

  • Golightly A, Wilkinson D (2006) Bayesian sequential inference for stochastic kinetic biochemical network models. J Comput Biol 13:838–851

    Article  MathSciNet  Google Scholar 

  • Golightly A, Wilkinson D (2008) Bayesian inference for nonlinear multivariate diffusion models observed with error. Comput Stat Data Anal 52:1674–1693

    Article  MathSciNet  MATH  Google Scholar 

  • Golightly A, Wilkinson D (2010) Markov chain Monte Carlo algorithms for SDE parameter estimation. In: Lawrence N, Girolami M, Rattray M, Sanguinetti G (eds) Introduction to learning and inference for computational systems biology. MIT, Cambridge, pp 253–275

    Google Scholar 

  • Grabert H, Green M (1979) Fluctuations and nonlinear irreversible processes. Phys Rev A 19:1747–1756

    Article  MathSciNet  Google Scholar 

  • Grabert H, Graham R, Green M (1980) Fluctuations and nonlinear irreversible processes II. Phys Rev A 21:2136–2146

    Article  MathSciNet  Google Scholar 

  • Grabert H, Hänggi P, Oppenheim I (1983) Fluctuations in reversible chemical reactions. Phys A 117:300–316

    Article  MathSciNet  Google Scholar 

  • Grasman J, Ludwig D (1983) The accuracy of the diffusion approximation to the expected time to extinction for some discrete stochastic processes. J Appl Probab 20:305–321

    Article  MathSciNet  MATH  Google Scholar 

  • Green M (1952) Markoff random processes and the statistical mechanics of time-dependent phenomena. J Chem Phys 20:1281–1295

    Article  MathSciNet  Google Scholar 

  • Guess H, Gillespie J (1977) Diffusion approximations to linear stochastic difference equations with stationary coefficients. J Appl Probab 14:58–74

    Article  MathSciNet  MATH  Google Scholar 

  • Hänggi P (1982) Nonlinear fluctuations: the problem of deterministic limit and reconstruction of stochastic dynamics. Phys Rev A 25:1130–1136

    Article  MathSciNet  Google Scholar 

  • Hänggi P, Jung P (1988) Bistability in active circuits: application of a novel Fokker-Planck approach. IBM J Res Dev 32:119–126

    Article  Google Scholar 

  • Hänggi P, Grabert H, Talkner P, Thomas H (1984) Bistable systems: master equation versus Fokker-Planck modeling. Phys Rev A 29:371–378

    Article  MathSciNet  Google Scholar 

  • Haskey H (1954) A general expression for the mean in a simple stochastic epidemic. Biometrika 41:272–275

    MathSciNet  MATH  Google Scholar 

  • Hayot F, Jayaprakash C (2004) The linear noise approximation for molecular fluctuations within cells. Phys Biol 1:205–210

    Article  Google Scholar 

  • Horsthemke W, Brenig L (1977) Non-linear Fokker-Planck equation as an asymptotic representation of the master equation. Z Phys B 27:341–348

    Article  MathSciNet  Google Scholar 

  • Horsthemke W, Lefever R (1984) Noise-induced transitions: theory and applications in physics, chemistry, and biology. Springer, Berlin

    MATH  Google Scholar 

  • Hsu JP, Wang HH (1987) Kinetics of bacterial adhesion – a stochastic analysis. J Theor Biol 124:405–413

    Article  Google Scholar 

  • Hufnagel L, Brockmann D, Geisel T (2004) Forecast and control of epidemics in a globalized world. Proc Natl Acad Sci USA 101:15124–15129

    Article  Google Scholar 

  • Karth M, Peinke J (2003) Stochastic modeling of fat-tailed probabilities of foreign exchange rates. Complexity 8:34–42

    Article  Google Scholar 

  • Keeling M, Rohani P (2008) Modeling infectious disease in humans and animals. Princeton University Press, Princeton

    Google Scholar 

  • Kepler T, Elston T (2001) Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J 81:3116–3136

    Article  Google Scholar 

  • Kishida K, Kanemoto S, Sekiya T (1976) Reactor noise theory based on system size expansion. J Nucl Sci Technol 13:19–29

    Article  Google Scholar 

  • Kleinhans D, Friedrich R, Nawroth A, Peinke J (2005) An iterative procedure for the estimation of drift and diffusion coefficients of Langevin processes. Phys Lett A 346:42–46

    Article  MathSciNet  MATH  Google Scholar 

  • Kloeden P, Platen E (1999) Numerical solution of stochastic differential equations, 3rd edn. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Kramers H (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7:284–304

    Article  MathSciNet  MATH  Google Scholar 

  • Kubo R, Matsuo K, Kitahara K (1973) Fluctuation and relaxation of macrovariables. J Stat Phys 9:51–96

    Article  Google Scholar 

  • Kurtz T (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes. J Appl Probab 7:49–58

    Article  MathSciNet  MATH  Google Scholar 

  • Kurtz T (1971) Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J Appl Probab 8:344–356

    Article  MathSciNet  MATH  Google Scholar 

  • Kurtz T (1981) Approximation of population processes. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Lande R, Engen S, Sæther B (2003) Stochastic population dynamics in ecology and conservation. Oxford University Press, New York

    Book  Google Scholar 

  • Leung H (1985) Expansion of the master equation for a biomolecular selection model. Bull Math Biol 47:231–238

    MathSciNet  MATH  Google Scholar 

  • McKane AJ, Newman T (2004) Stochastic models in population biology and their deterministic analogs. Phys Rev E 70:041902

    Article  MathSciNet  Google Scholar 

  • McNeil D (1973) Diffusion limits for congestion models. J Appl Probab 10:368–376

    Article  MathSciNet  MATH  Google Scholar 

  • McQuarrie D (1967) Stochastic approach to chemical kinetics. J Appl Probab 4:413–478

    Article  MathSciNet  MATH  Google Scholar 

  • Moyal J (1949) Stochastic processes and statistical physics. J R Stat Soc Ser B 11:150–210

    MathSciNet  MATH  Google Scholar 

  • Muñoz M, Garrido P (1994) Fokker-Planck equation for nonequilibrium competing dynamic models. Phys Rev E 50:2458–2466

    Article  Google Scholar 

  • Naert A, Friedrich R, Peinke J (1997) Fokker-Planck equation for the energy cascade in turbulence. Phys Rev E 56:6719–6722

    Article  Google Scholar 

  • Nåsell I (2002) Stochastic models of some endemic infections. Math Biosci 179:1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Norman M (1974) A central limit theorem for Markov processes that move by small steps. Ann Probab 2:1065–1074

    Article  MathSciNet  MATH  Google Scholar 

  • Norman M (1975) Diffusion approximation of non-Markovian processes. Ann Probab 3:358–364

    Article  MathSciNet  MATH  Google Scholar 

  • Ohkubo J (2008) Approximation scheme for master equations: variational approach to multivariate case. J Chem Phys 129:044108

    Article  Google Scholar 

  • Paulsson J (2004) Summing up the noise in gene networks. Nature 427:415–418

    Article  Google Scholar 

  • Pawula R (1967a) Approximation of the linear Boltzmann equation by the Fokker-Planck equation. Phys Rev 162:186–188

    Article  Google Scholar 

  • Pawula R (1967b) Generalizations and extensions of the Fokker-Planck-Kolmogorov equations. IEEE Trans Inf Theory 13:33–41

    Article  MathSciNet  MATH  Google Scholar 

  • Pielou (1969) An introduction to mathematical ecology. Wiley, New York

    Google Scholar 

  • Pierobon P, Parmeggiani A, von Oppen F, Frey E (2005) Dynamic correlation functions and Boltzmann Langevin approach for a driven one dimensional lattice gas. Phys Rev E 72:036123

    Article  Google Scholar 

  • Pollard D (1984) Convergence of stochastic processes. Springer, New York

    Book  MATH  Google Scholar 

  • Pollett P (1990) On a model for interference between searching insect parasites. J Aust Math Soc Ser B 32:133–150

    Article  MathSciNet  MATH  Google Scholar 

  • Pollett P (2001) Diffusion approximations for ecological models. Proceedings of the international congress of modelling and simulation, Australian National University, Canberra

    Google Scholar 

  • Ramshaw J (1985) Augmented Langevin approach to fluctuations in nonlinear irreversible processes. J Stat Phys 38:669–680

    Article  MathSciNet  Google Scholar 

  • Rao C, Wolf D, Arkin A (2002) Control, exploitation and tolerance of intracellular noise. Nature 420:231–237

    Article  Google Scholar 

  • Renshaw E (1991) Modelling biological populations in space and time. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Risken H (1984) The Fokker-Planck equation. Springer, Berlin

    Book  MATH  Google Scholar 

  • Risken H, Vollmer H (1987) On solutions of truncated Kramers-Moyal expansions; continuum approximations to the Poisson process. Condens Matter 66:257–262

    Article  MathSciNet  Google Scholar 

  • Robertson S, Pilling M, Green N (1996) Diffusion approximations of the two-dimensional master equation. Mol Phys 88:1541–1561

    Article  Google Scholar 

  • Sancho J, San Miguel M (1984) Unified theory of internal and external fluctuations. In: Casas-Vázquez J, Jou D, Lebon G (eds) Recent developments in nonequilibrium thermodynamics. Lecture notes in physics, vol 199. Springer, Berlin, pp 337–352

    Google Scholar 

  • Seifert U (2008) Stochastic thermodynamics: principles and perspectives. Eur Phys J B 64:423–431

    Article  MATH  Google Scholar 

  • Shizgal B, Barrett J (1989) Time dependent nucleation. J Chem Phys 91:6505–6518

    Article  Google Scholar 

  • Sjöberg P, Lötstedt P, Elf J (2009) Fokker-Planck approximation of the master equation in molecular biology. Comput Vis Sci 12:37–50

    Article  MathSciNet  Google Scholar 

  • Song X, Wang H, van Voorhis T (2008) A Langevin equation approach to electron transfer reactions in the diabatic basis. J Chem Phys 129:144502

    Article  Google Scholar 

  • Strumik M, Macek W (2008) Statistical analysis of transfer of fluctuations in solar wind turbulence. Nonlinear Proc Geophys 15:607–613

    Article  Google Scholar 

  • Tian T, Burrage K, Burrage P, Carletti M (2007) Stochastic delay differential equations for genetic regulatory networks. J Comput Appl Math 205:696–707

    Article  MathSciNet  MATH  Google Scholar 

  • van Kampen N (1961) A power series expansion of the master equation. Can J Phys 39:551–567

    Article  MATH  Google Scholar 

  • van Kampen N (1965) Fluctuations in nonlinear systems. In: Burgess R (ed) Fluctuation phenomena in solids. Academic, New York, pp 139–177

    Google Scholar 

  • van Kampen N (1981a) Itô versus Stratonovich. J Stat Phys 24:175–187

    Article  MATH  Google Scholar 

  • van Kampen N (1981b) The validity of nonlinear Langevin equations. J Stat Phys 25:431–442

    Article  Google Scholar 

  • van Kampen N (1997) Stochastic processes in physics and chemistry, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Walsh J (1981) Well-timed diffusion approximations. Adv Appl Probab 13:352–368

    Article  MATH  Google Scholar 

  • Wong E, Zakai M (1965) On the convergence of ordinary integrals to stochastic integrals. Ann Math Stat 36:1560–1564

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuchs, C. (2013). Approximation of Markov Jump Processes by Diffusions. In: Inference for Diffusion Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25969-2_4

Download citation

Publish with us

Policies and ethics