Skip to main content

Stochastic Differential Equations and Diffusions in a Nutshell

  • Chapter
  • First Online:
Inference for Diffusion Processes
  • 1994 Accesses

Abstract

Stochastic differential equations (SDEs) are a powerful and natural tool for the modelling of complex systems that change continuously in time. This chapter provides a short introduction to SDEs and their solutions, which under regularity conditions agree with the class of diffusion processes. In particular, it covers the motivation and introduction of stochastic integrals as opposed to the classical Lebesgue-Stieltjes integral, the definition of diffusion processes, key properties and formulas from stochastic calculus, and finally numerical approximation and exact sampling methods. The chapter serves as a basis for the remaining parts of this book and offers a quick access to stochastic calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some authors denote by a Wiener process the mathematical description given above while Brownian motion stands for the physical movement of a diffusing particle. In this book, both terms are used interchangeably.

  2. 2.

    This choice of autocorrelation implies a constant nonzero power spectral density of the process, defined as the Fourier transform of its autocorrelation function. That explains the term white noise in analogy to white light, where all visible frequencies occur in equal amounts.

  3. 3.

    Contrarily to common matrix notation, but consistently with the differential equation representation, the scalar Δt k is multiplied with the vector μ from the right—a consetude that will be kept throughout this book.

References

  • Aït-Sahalia Y (2008) Closed-form likelihood expansions for multivariate diffusions. Ann Stat 36:906–937

    Article  MATH  Google Scholar 

  • Alonso D, McKane A, Pascual M (2007) Stochastic amplification in epidemics. J R Soc Interface 4:575–582

    Article  Google Scholar 

  • Arnold L (1973) Stochastische Differentialgleichungen. Oldenbourg, München

    MATH  Google Scholar 

  • Barbour A (1974) On a functional central limit theorem for Markov population processes. Adv Appl Probab 6:21–39

    Article  MathSciNet  MATH  Google Scholar 

  • Beskos A, Papaspiliopoulos O, Roberts G, Fearnhead P (2006) Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with comments). J R Stat Soc Ser B 68:333–382

    Article  MathSciNet  MATH  Google Scholar 

  • Bibby B, Sørensen M (2001) Simplified estimating functions for diffusion models with a high-dimensional parameter. Scand J Stat 28:99–112

    Article  MATH  Google Scholar 

  • Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 81:637–654

    Article  Google Scholar 

  • Capasso V, Morale D (2009) Stochastic modelling of tumour-induced angiogenesis. J Math Biol 58:219–233

    Article  MathSciNet  MATH  Google Scholar 

  • Chang CC (1987) Numerical solution of stochastic differential equations with constant diffusion coefficients. Math Comp 49:523–542

    Article  MathSciNet  MATH  Google Scholar 

  • Chen WY, Bokka S (2005) Stochastic modeling of nonlinear epidemiology. J Theor Biol 234:455–470

    Article  MathSciNet  Google Scholar 

  • Chiarella C, Hung H, Tô TD (2009) The volatility structure of the fixed income market under the HJM framework: a nonlinear filtering approach. Comput Stat Data Anal 53:2075–2088

    Article  MATH  Google Scholar 

  • Clancy D, French N (2001) A stochastic model for disease transmission in a managed herd, motivated by Neospora caninum amongst dairy cattle. Math Biosci 170:113–132

    Article  MathSciNet  MATH  Google Scholar 

  • Cobb L (1981) Stochastic differential equations for the social sciences. In: Cobb L, Thrall R (eds) Mathematical frontiers of the social and policy sciences. Westview Press, Boulder

    Google Scholar 

  • Cox J, Ingersoll J, Ross S (1985) An intertemporal general equilibrium model of asset prices. Econometrica 53:363–384

    Article  MathSciNet  MATH  Google Scholar 

  • de la Lama M, Szendro I, Iglesias J, Wio H (2006) Van Kampen’s expansion approach in an opinion formation model. Eur Phys J B 51:435–442

    Article  Google Scholar 

  • Duan J, Gelfand A, Sirmans C (2009) Modeling space-time data using stochastic differential equations. Bayesian Anal 4:413–437

    Article  MathSciNet  Google Scholar 

  • Elerian O, Chib S, Shephard N (2001) Likelihood inference for discretely observed nonlinear diffusions. Econometrica 69:959–993

    Article  MathSciNet  MATH  Google Scholar 

  • Elf J, Ehrenberg M (2003) Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. Genome Res 13:2475–2484

    Article  Google Scholar 

  • Eraker B (2001) MCMC analysis of diffusion models with application to finance. J Bus Econom Stat 19:177–191

    Article  MathSciNet  Google Scholar 

  • Fahrmeir L (1976) Approximation von Stochastischen Differentialgleichungen auf Digital- und Hybridrechnern. Computing 16:359–371

    Article  MathSciNet  MATH  Google Scholar 

  • Fahrmeir L, Beeck H (1974) Zur Simulation stetiger stochastischer Wirtschaftsmodelle. In: Transactions of the seventh Prague conference and of the European meeting of statisticians, Prague, pp 113–122

    Google Scholar 

  • Fearnhead P (2006) The stationary distribution of allele frequencies when selection acts at unlinked loci. Theor Popul Biol 70:376–386

    Article  MATH  Google Scholar 

  • Ferm L, Lötstedt P, Hellander A (2008) A hierarchy of approximations of the master equation scaled by a size parameter. J Sci Comput 34:127–151

    Article  MathSciNet  MATH  Google Scholar 

  • Fogelson A (1984) A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting. J Comput Phys 56:111–134

    Article  MathSciNet  MATH  Google Scholar 

  • Gard T (1988) Introduction to stochastic differential equations. Monographs and textbooks in pure and applied mathematics, vol 114. Dekker, New York

    Google Scholar 

  • Gardiner C (1983) Handbook of stochastic methods. Springer, Berlin/Heidelberg

    Book  MATH  Google Scholar 

  • Golightly A, Wilkinson D (2005) Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics 61:781–788

    Article  MathSciNet  MATH  Google Scholar 

  • Golightly A, Wilkinson D (2006) Bayesian sequential inference for stochastic kinetic biochemical network models. J Comput Biol 13:838–851

    Article  MathSciNet  Google Scholar 

  • Golightly A, Wilkinson D (2008) Bayesian inference for nonlinear multivariate diffusion models observed with error. Comput Stat Data Anal 52:1674–1693

    Article  MathSciNet  MATH  Google Scholar 

  • Horsthemke W, Lefever R (1984) Noise-induced transitions: theory and applications in physics, chemistry, and biology. Springer, Berlin

    MATH  Google Scholar 

  • Hufnagel L, Brockmann D, Geisel T (2004) Forecast and control of epidemics in a globalized world. Proc Natl Acad Sci U S A 101:15124–15129

    Article  Google Scholar 

  • Itô K (1944) Stochastic integral. Proc Jpn Acad 20:519–524

    Article  MATH  Google Scholar 

  • Itô K (1946) On a stochastic integral equation. Proc Jpn Acad 22:32–35

    Article  MATH  Google Scholar 

  • Karatzas I, Shreve S (1991) Brownian motion and stochastic calculus, 2nd edn. Graduate texts in mathematics. Springer, New York

    MATH  Google Scholar 

  • Kimura M (1964) Diffusion models in population genetics. J Appl Probab 1:177–232

    Article  MATH  Google Scholar 

  • Klebaner F (2005) Introduction to stochastic calculus with applications, 2nd edn. Imperial College Press, London

    MATH  Google Scholar 

  • Kloeden P, Platen E (1991) Stratonovich and Itô stochastic Taylor expansions. Math Nachr 151:33–50

    Article  MathSciNet  MATH  Google Scholar 

  • Kloeden P, Platen E (1999) Numerical solution of stochastic differential equations, 3rd edn. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Kutoyants Y (2004) Statistical inference for ergodic diffusion processes. Springer series in statistics. Springer, London

    MATH  Google Scholar 

  • Leung H (1985) Expansion of the master equation for a biomolecular selection model. Bull Math Biol 47:231–238

    MathSciNet  MATH  Google Scholar 

  • McNeil D (1973) Diffusion limits for congestion models. J Appl Probab 10:368–376

    Article  MathSciNet  MATH  Google Scholar 

  • Merton R (1976) Option pricing when underlying stock returns are discontinuous. J Finan Econ 3:125–144

    Article  MATH  Google Scholar 

  • Newton N (1991) Asymptotically efficient Runge-Kutta methods for a class of Itô and Stratonovich equations. SIAM J Appl Math 51:542–567

    Article  MathSciNet  MATH  Google Scholar 

  • Øksendal B (2003) Stochastic differential equations. An introduction with applications, 6th edn. Springer, Berlin/Heidelberg

    Google Scholar 

  • Papaspiliopoulos O, Roberts G, Sköld M (2003) Non-centered parameterisations for hierarchical models and data augmentation (with discussion). In: Bernardo J, Bayarri M, Berger J, Dawid A, Heckerman D, Smith A, West M (eds) Bayesian statistics 7. Lecture notes in computer science, vol 4699. Oxford University Press, Oxford, pp 307–326

    Google Scholar 

  • Protter P (1990) Stochastic integration and differential equations. Applications of mathematics, vol 21. Springer, Berlin/Heidelberg

    Google Scholar 

  • Ramshaw J (1985) Augmented Langevin approach to fluctuations in nonlinear irreversible processes. J Statist Phys 38:669–680

    Article  MathSciNet  Google Scholar 

  • Revuz D, Yor M (1991) Continuous martingales and Brownian motion. A series of comprehensive studies in mathematics, vol 293. Springer, Berlin/Heidelberg

    Google Scholar 

  • Robinson E (1959) A stochastic diffusion theory of price. Econometrica 27:679–684

    Article  MathSciNet  MATH  Google Scholar 

  • Rümelin W (1982) Numerical treatment of stochastic differential equations. SIAM J Numer Anal 19:604–613

    Article  MathSciNet  MATH  Google Scholar 

  • Seifert U (2008) Stochastic thermodynamics: principles and perspectives. Eur Phys J B 64:423–431

    Article  MATH  Google Scholar 

  • Sjöberg P, Lötstedt P, Elf J (2009) Fokker-Planck approximation of the master equation in molecular biology. Comput Vis Sci 12:37–50

    Article  MathSciNet  Google Scholar 

  • Stratonovich R (1966) A new representation for stochastic integrals and equations. SIAM J Control Optim 4:362–371

    Article  MathSciNet  Google Scholar 

  • Stratonovich R (1989) Some Markov methods in the theory of stochastic processes in nonlinear dynamical systems. In: Moss F, McClintock P (eds) Noise in nonlinear dynamical systems. Theory of continuous Fokker-Planck systems, vol 1. Cambridge University Press, Cambridge, pp 16–71

    Google Scholar 

  • Stroock D, Varadhan S (1979) Multidimensional diffusion processes. A series of comprehensive studies in mathematics, vol 233. Springer, New York

    Google Scholar 

  • Tian T, Burrage K, Burrage P, Carletti M (2007) Stochastic delay differential equations for genetic regulatory networks. J Comput Appl Math 205:696–707

    Article  MathSciNet  MATH  Google Scholar 

  • Tuckwell H (1987) Diffusion approximations to channel noise. J Theor Biol 127:427–438

    Article  MathSciNet  Google Scholar 

  • van Kampen N (1965) Fluctuations in nonlinear systems. In: Burgess R (ed) Fluctuation phenomena in solids. Academic, New York, pp 139–177

    Google Scholar 

  • van Kampen N (1981) The validity of nonlinear Langevin equations. J Stat Phys 25:431–442

    Article  Google Scholar 

  • Walsh J (1981) A stochastic model of neural response. Adv Appl Probab 13:231–281

    Article  MATH  Google Scholar 

  • Wiener N (1923) Differential space. J Math Phys 2:131–174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuchs, C. (2013). Stochastic Differential Equations and Diffusions in a Nutshell. In: Inference for Diffusion Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25969-2_3

Download citation

Publish with us

Policies and ethics