Skip to main content

Competitive and Deterministic Embeddings of Virtual Networks

  • Conference paper
Book cover Distributed Computing and Networking (ICDCN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7129))

Included in the following conference series:

Abstract

Network virtualization is an important concept to overcome the ossification of today’s Internet as it facilitates innovation also in the network core and as it promises a more efficient use of the given resources and infrastructure. Virtual networks (VNets) provide an abstraction of the physical network: multiple VNets may cohabit the same physical network, but can be based on completely different protocol stacks (also beyond IP). One of the main challenges in network virtualization is the efficient admission control and embedding of VNets. The demand for virtual networks (e.g., for a video conference) can be hard to predict, and once the request is accepted, the specification / QoS guarantees must be ensured throughout the VNet’s lifetime. This requires an admission control algorithm which only selects high-benefit VNets in times of scarce resources, and an embedding algorithm which realizes the VNet in such a way that the likelihood that future requests can be embedded as well is maximized.

This paper describes a generic algorithm for the online VNet embedding problem which does not rely on any knowledge of the future VNet requests but whose performance is competitive to an optimal offline algorithm that has complete knowledge of the request sequence in advance: the so-called competitive ratio is, loosely speaking, logarithmic in the sum of the resources. Our algorithm is generic in the sense that it supports multiple traffic models, multiple routing models, and even allows for nonuniform benefits and durations of VNet requests.

This contribution is based on the technical report available from the ArXiv document server (ID: 1101.5221).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlswede, R., Cai, N., Li, S., Yeung, R.: Network information flow. IEEE Transactions on Information Theory 46(4), 1204–1216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersen, D.: Theoretical approaches to node assignment (2009), http://www.cs.cmu.edu/dga/papers/andersenassignabstract.html

  3. Arora, D., Bienkowski, M., Feldmann, A., Schaffrath, G., Schmid, S.: Online strategies for intra and inter provider service migration in virtual networks. In: Proc. Principles, Systems and Applications of IP Telecommunications, IPTComm (2011)

    Google Scholar 

  4. Awerbuch, B., Azar, Y.: Competitive multicast routing. Wirel. Netw. 1 (1995)

    Google Scholar 

  5. Awerbuch, B., Azar, Y., Plotkin, S.: Throughput-competitive on-line routing. In: Proc. IEEE FOCS (1993)

    Google Scholar 

  6. Azar, Y., Zachut, R.: Packet Routing and Information Gathering in Lines, Rings and Trees. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 484–495. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Bansal, N., Lee, K.-W., Nagarajan, V., Zafer, M.: Minimum congestion mapping in a cloud. In: Proc. ACM PODC, pp. 267–276 (2011)

    Google Scholar 

  8. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge University Press, New York (1998)

    MATH  Google Scholar 

  9. Buchbinder, N., Naor, J.S.: Improved bounds for online routing and packing via a primal-dual approach. In: Proc. IEEE FOCS (2006)

    Google Scholar 

  10. Buchbinder, N., Naor, J.S.: The design of competitive online algorithms via a primal-dual approach. Foundations and Trends in Theoretical Computer Science 3(2-3), 99–263 (2009)

    MathSciNet  Google Scholar 

  11. Buchbinder, N., Naor, J.S.: Online primal-dual algorithms for covering and packing. Math. Oper. Res. 34(2), 270–286 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved LP-based approximation for Steiner tree. In: Proc. ACM STOC, pp. 583–592 (2010)

    Google Scholar 

  13. Chekuri, C., Shepherd, F.B., Oriolo, G., Scutellá, M.G.: Hardness of robust network design. Netw. 50(1), 50–54 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chowdhury, N.M., Boutaba, R.: A survey of network virtualization. Computer Networks (2009)

    Google Scholar 

  15. Duffield, N., Goyal, P., Greenberg, A., Mishra, P., Ramakrishnan, K., van der Merive, J.: A flexible model for resource management in virtual private networks. In: Proc. SIGCOMM. ACM (1999)

    Google Scholar 

  16. Eisenbrand, F., Grandoni, F.: An improved approximation algorithm for virtual private network design. In: Proc. ACM SODA (2005)

    Google Scholar 

  17. Erlebach, T., Ruegg, M.: Optimal bandwidth reservation in hose-model VPNs with multi-path routing. In: Proc. IEEE INFOCOM, pp. 2275–2282 (2004)

    Google Scholar 

  18. Fan, J., Ammar, M.H.: Dynamic topology configuration in service overlay networks: A study of reconfiguration policies. In: Proc. IEEE INFOCOM (2006)

    Google Scholar 

  19. Fingerhut, J.A., Suri, S., Turner, J.S.: Designing least-cost nonblocking broadband networks. J. Algorithms 24(2), 287–309 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grandoni, F., Rothvoß, T.: Network Design Via Core Detouring for Problems without a Core. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 490–502. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Grewal, K., Budhiraja, S.: Performance evaluation of on-line hose model VPN provisioning algorithm. Advances in Computer Vision and Information Technology (2008)

    Google Scholar 

  22. Gupta, A., Kumar, A., Roughgarden, T.: Simpler and better approximation algorithms for network design. In: Proc. ACM STOC, pp. 365–372 (2003)

    Google Scholar 

  23. Italiano, G., Leonardi, S., Oriolo, G.: Design of trees in the hose model: the balanced case. Operations Research Letters 34(6), 601–606 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Juttner, A., Szabo, I., Szentesi, A.: On bandwidth efficiency of the hose resource management model in virtual private networks. In: Proc. IEEE INFOCOM (2003)

    Google Scholar 

  26. Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted Steiner trees. J. Algorithms 19(1), 104–115 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kodialam, M., Lakshman, T., Sengupta, S.: Online multicast routing with bandwidth guarantees: a new approach using multicast network flow. IEEE/ACM Transactions on Networking (TON) 11(4), 676–686 (2003)

    Article  Google Scholar 

  28. Kumar, A., Rastogi, R., Silberschatz, A., Yener, B.: Algorithms for provisioning virtual private networks in the hose model. IEEE/ACM Trans. Netw. 10(4) (2002)

    Google Scholar 

  29. Liu, Y., Sun, Y., Chen, M.: MTRA: An on-line hose-model VPN provisioning algorithm. Telecommunication Systems 31(4), 379–398 (2006)

    Article  Google Scholar 

  30. Schaffrath, G., Schmid, S., Feldmann, A.: Generalized and resource-efficient VNet embeddings with migrations. In: ArXiv Technical Report 1012.4066 (2010)

    Google Scholar 

  31. Schaffrath, G., Werle, C., Papadimitriou, P., Feldmann, A., Bless, R., Greenhalgh, A., Wundsam, A., Kind, M., Maennel, O., Mathy, L.: Network virtualization architecture: Proposal and initial prototype. In: Proc. ACM VISA, pp. 63–72. ACM (2009)

    Google Scholar 

  32. Vazirani, V.V.: Recent results on approximating the Steiner tree problem and its generalizations. Theor. Comput. Sci. 235(1), 205–216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Young, N.: Sequential and parallel algorithms for mixed packing and covering. In: Proc. 42nd IEEE FOCS (2001)

    Google Scholar 

  34. Zhu, Y., Ammar, M.H.: Algorithms for assigning substrate network resources to virtual network components. In: Proc. IEEE  INFOCOM (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Even, G., Medina, M., Schaffrath, G., Schmid, S. (2012). Competitive and Deterministic Embeddings of Virtual Networks. In: Bononi, L., Datta, A.K., Devismes, S., Misra, A. (eds) Distributed Computing and Networking. ICDCN 2012. Lecture Notes in Computer Science, vol 7129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25959-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25959-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25958-6

  • Online ISBN: 978-3-642-25959-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics