Daily Regulation of Hormone Profiles

  • Andries KalsbeekEmail author
  • Eric Fliers
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 217)


The highly coordinated output of the hypothalamic biological clock does not only govern the daily rhythm in sleep/wake (or feeding/fasting) behaviour but also has direct control over many aspects of hormone release. In fact, a significant proportion of our current understanding of the circadian clock has its roots in the study of the intimate connections between the hypothalamic clock and multiple endocrine axes. This chapter will focus on the anatomical connections used by the mammalian biological clock to enforce its endogenous rhythmicity on the rest of the body, using a number of different hormone systems as a representative example. Experimental studies have revealed a highly specialised organisation of the connections between the mammalian circadian clock neurons and neuroendocrine as well as pre-autonomic neurons in the hypothalamus. These complex connections ensure a logical coordination between behavioural, endocrine and metabolic functions that will help the organism adjust to the time of day most efficiently. For example, activation of the orexin system by the hypothalamic biological clock at the start of the active phase not only ensures that we wake up on time but also that our glucose metabolism and cardiovascular system are prepared for this increased activity. Nevertheless, it is very likely that the circadian clock present within the endocrine glands plays a significant role as well, for instance, by altering these glands’ sensitivity to specific stimuli throughout the day. In this way the net result of the activity of the hypothalamic and peripheral clocks ensures an optimal endocrine adaptation of the metabolism of the organism to its time-structured environment.


Hypothalamus Autonomic nervous system Orexin Glucose Melatonin GABA Liver TSH 



Adrenocorticotrophic hormone


Autonomic nervous system


Arginine vasopressin


Anteroventral periventricular nucleus


Brown adipose tissue


Circadian locomotor output cycles kaput


Central nervous system


Corticotrophin-releasing hormone


Cerebrospinal fluid


Type 2 deiodinase


Dorsomedial nucleus of the hypothalamus




Oestrogen receptor


Free fatty acid


Gamma-aminobutyric acid


Gonadotropin-inhibitory hormone


Gonadotropin-releasing hormone








Hormone-sensitive lipase


Intensive care unit




Intermediolateral column




Light/light, i.e. constant light


Luteinising hormone


Light microscopy


Lipoprotein lipase


Medial preoptic area


Nicotinamide phosphoribosyltransferase


Neuropeptide FF


Neuropeptide Y




Pituitary adenylate cyclase-activating polypeptide


Pre-B-cell colony-enhancing factor


Periventricular nucleus


Periventricular PVN




Perifornical area


Pseudo rabies virus


Paraventricular nucleus of the hypothalamus


Rate of appearance


RF-amide-related peptide


Retinohypothalamic tract


Superior cervical ganglion


Suprachiasmatic nucleus


Standard error of the mean


Supraoptic nucleus


Subparaventricular PVN


Type 2 diabetes mellitus






Tyrosine hydroxylase


Thyrotrophin-releasing hormone


Thyroid-stimulating hormone




Vasoactive intestinal polypeptide


Ventromedial nucleus of the hypothalamus




White adipose tissue


Zeitgeber time



The authors thank Henk Stoffels for the preparation of the images and Wilma Verweij for the correction of the manuscript.


  1. Ackermans MT, Kettelarij-Haas Y, Boelen A, Endert E (2012) Determination of thyroid hormones and their metabolites in tissue using SPE UPLC-tandem MS. Biomed Chromatogr 26(4): 485–490PubMedCrossRefGoogle Scholar
  2. Adriaanse R, Romijn JA, Endert E, Wiersinga WM (1992) The nocturnal thyroid-stimulating hormone surge is absent in overt, present in mild primary and equivocal in central hypothyroidism. Acta Endocrinol 126:206–212PubMedGoogle Scholar
  3. Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG, Gant TW, Hastings MH, Kyriacou CP (2002) Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12:540–550PubMedCrossRefGoogle Scholar
  4. Alam MN, Kumar S, Bashir T, Suntsova N, Methippara MM, Szymusiak R, McGinty D (2005) GABA-mediated control of hypocretin- but not melanin-concentrating hormone-immunoreactive neurones during sleep in rats. J Physiol 563:569–582PubMedCrossRefGoogle Scholar
  5. Alexander LD, Sander LD (1994) Vasoactive intestinal peptide stimulates ACTH and corticosterone release after injection into the PVN. Regul Pept 51:221–227PubMedCrossRefGoogle Scholar
  6. Alkemade A, Unmehopa U, Brouwer JP, Hoogendijk WJ, Wiersinga WM, Swaab DF, Fliers E (2003) Decreased thyrotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus of patients with major depression. Mol Psychiatry 8:838–839PubMedCrossRefGoogle Scholar
  7. Allan JS, Czeisler CA (1994) Persistence of the circadian thyrotropin rhythm under constant conditions and after light-induced shifts of circadian phase. J Clin Endocrinol Metab 79: 508–512PubMedCrossRefGoogle Scholar
  8. Andersson K, Arner P (1995) Cholinoceptor-mediated effects on glycerol output from human adipose tissue using in situ microdialysis. Br J Pharmacol 115:1155–1162PubMedCrossRefGoogle Scholar
  9. Ando H, Yanagihara H, Hayashi Y, Obi Y, Tsuruoka S, Takamura T, Kaneko S, Fujimura A (2005) Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology 146:5631–5636PubMedCrossRefGoogle Scholar
  10. Axelrod J (1974) The pineal gland: a neurochemical transducer. Science 184:1341–1348PubMedCrossRefGoogle Scholar
  11. Badura LL, Kelly KK, Nunez AA (1989) Knife cuts lateral but not dorsal to the hypothalamic paraventricular nucleus abolish gonadal responses to photoperiod in female hamsters (Mesocricetus auratus). J Biol Rhythms 4:79–91PubMedCrossRefGoogle Scholar
  12. Bamshad M, Aoki VT, Adkison MG, Warren WS, Bartness TJ (1998) Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am J Physiol 275:R291–R299PubMedGoogle Scholar
  13. Bando H, Nishio T, van der Horst GT, Masubuchi S, Hisa Y, Okamura H (2007) Vagal regulation of respiratory clocks in mice. J Neurosci 27:4359–4365PubMedCrossRefGoogle Scholar
  14. Barassin S, Kalsbeek A, Saboureau M et al (2000) Potentiation effect of vasopressin on melatonin secretion as determined by trans-pineal microdialysis in the rat. J Neuroendocrinol 12:61–68PubMedCrossRefGoogle Scholar
  15. Bargman W (1943) Die epiphysis cerebri. In: Von MW (ed) Handbuch der Miskroskopischen Anatomie des Menschen. Springer, Berlin, pp 338–502Google Scholar
  16. Barnea M, Madar Z, Froy O (2010) High-fat diet followed by fasting disrupts circadian expression of adiponectin signaling pathway in muscle and adipose tissue. Obesity 18:230–238PubMedCrossRefGoogle Scholar
  17. Bartalena L, Placidi GF, Martino E, Falcone M, Pellegrini L, Dell’Osso L, Pacchiarotti A, Pinchera A (1990) Nocturnal serum thyrotropin (TSH) surge and the TSH response to TSH-releasing hormone: dissociated behavior in untreated depressives. J Clin Endocrinol Metab 71:650–655PubMedCrossRefGoogle Scholar
  18. Bartalena L, Martino E, Petrini L, Velluzzi F, Loviselli A, Grasso L, Mammoli C, Pinchera A (1991) The nocturnal serum thyrotropin surge is abolished in patients with adrenocorticotropin (ACTH)-dependent or ACTH-independent Cushing’s syndrome. J Clin Endocrinol Metab 72: 1195–1199PubMedCrossRefGoogle Scholar
  19. Bartness TJ, Song CK, Demas GE (2001) SCN efferents to peripheral tissues: implications for biological rhythms. J Biol Rhythms 16:196–204PubMedGoogle Scholar
  20. Bass J (2013) Circadian clocks and metabolism. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, HeidelbergGoogle Scholar
  21. Behrends J, Prank K, Dogu E, Brabant G (1998) Central nervous system control of thyrotropin secretion during sleep and wakefulness. Horm Res 49:173–177PubMedCrossRefGoogle Scholar
  22. Benavides A, Siches M, Llobera M (1998) Circadian rhythms of lipoprotein lipase and hepatic lipase activities in intermediate metabolism of adult rat. Am J Physiol 275:R811–R817PubMedGoogle Scholar
  23. Benedict C, Shostak A, Lange T, Brooks SJ, Schiöth HB, Schultes B, Born J, Oster H, Hallschmid M (2012) Diurnal rhythm of circulating nicotinamide phosphoribosyltransferase (Nampt/Visfatin/PBEF): impact of sleep loss and relation to glucose metabolism. J Clin Endocrinol Metab 97(2):E218–E222PubMedCrossRefGoogle Scholar
  24. Bergö M, Olivecrona G, Olivecrona T (1996) Diurnal rhythms and effects of fasting and refeeding on rat adipose tissue lipoprotein lipase. Am J Physiol 271:E1092–E1097PubMedGoogle Scholar
  25. Berk ML, Finkelstein JA (1981) An autoradiographic determination of the efferent projections of the suprachiasmatic nucleus of the hypothalamus. Brain Res 226:1–13PubMedCrossRefGoogle Scholar
  26. Berndt J, Klöting N, Kralisch S, Kovacs P, Fasshauer M, Schön MR, Stumvoll M, Blüher M (2005) Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes 54:2911–2916PubMedCrossRefGoogle Scholar
  27. Bittman EL, Crandell RG, Lehman MN (1989) Influences of the paraventricular and suprachiasmatic nuclei and olfactory bulbs on melatonin responses in the golden hamster. Biol Reprod 40:118–126PubMedCrossRefGoogle Scholar
  28. Bos NPA, Mirmiran M (1990) Circadian rhythms in spontaneous neuronal discharges of the cultured suprachiasmatic nucleus. Brain Res 511:158–162PubMedCrossRefGoogle Scholar
  29. Boucher J, Daviaud D, Valet P (2005) Adipokine expression profile in adipocytes of different mouse models of obesity. Horm Metab Res 37:761–767PubMedCrossRefGoogle Scholar
  30. Bowers CW, Baldwin C, Zigmond RE (1984) Sympathetic reinnervation of the pineal gland after postganglionic nerve lesion does not restore normal pineal function. J Neurosci 4:2010–2015PubMedGoogle Scholar
  31. Brabant G, Prank K, Ranft U, Schuermeyer T, Wagner TO, Hauser H, Kummer B, Feistner H, Hesch RD, von zur Muhlen A (1990) Physiological regulation of circadian and pulsatile thyrotropin secretion in normal man and woman. J Clin Endocrinol Metab 70:403–409PubMedCrossRefGoogle Scholar
  32. Brown SA, Azzi A (2013) Peripheral circadian oscillators in mammals. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, HeidelbergCrossRefGoogle Scholar
  33. Buhr ED, Takahashi JS (2013) Molecular components of the mammalian circadian clock. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, HeidelbergCrossRefGoogle Scholar
  34. Buijs RM, Kalsbeek A (2001) Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci 2:521–526PubMedCrossRefGoogle Scholar
  35. Buijs RM, Van Eden CG (2000) The integration of stress by the hypothalamus, amygdale and prefrontal cortex: balance between the autonomic nervous system and the neuroendocrine system. Prog Brain Res 126:117–132PubMedCrossRefGoogle Scholar
  36. Buijs RM, Hou YX, Shinn S, Renaud LP (1994) Ultrastructural evidence for intra- and extranuclear projections of GABAergic neurons of the suprachiasmatic nucleus. J Comp Neurol 340: 381–391PubMedCrossRefGoogle Scholar
  37. Buijs RM, Wortel J, Van Heerikhuize JJ, Feenstra MGP, Ter Horst GJ, Romijn HJ, Kalsbeek A (1999) Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 11:1535–1544PubMedCrossRefGoogle Scholar
  38. Buijs RM, Chun SJ, Niijima A, Romijn HJ, Nagai K (2001) Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J Comp Neurol 431:405–423PubMedCrossRefGoogle Scholar
  39. Buijs RM, la Fleur SE, Wortel J, Van Heijningen C, Zuiddam L, Mettenleiter TC, Kalsbeek A, Nagai K, Niijima A (2003) The suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons. J Comp Neurol 464:36–48PubMedCrossRefGoogle Scholar
  40. Buijs RM, Scheer FA, Kreier F, Yi CX, Bos N, Goncharuk VD, Kalsbeek A (2006) Organization of circadian functions: interaction with the body. Prog Brain Res 153:341360Google Scholar
  41. Burgess HJ, Trinder J, Kim Y, Luke D (1997) Sleep and circadian influences on cardiac autonomic nervous system activity. Am J Physiol 273:H1761–H1768PubMedGoogle Scholar
  42. Burgueño A, Gemma C, Gianotti TF, Sookoian S, Pirola CJ (2010) Increased levels of resistin in rotating shift workers: a potential mediator of cardiovascular risk associated with circadian misalignment. Atherosclerosis 210:625–629PubMedCrossRefGoogle Scholar
  43. Cailotto C, van Heijningen C, van der Vliet J, van der Plasse G, Habold C, Kalsbeek A, Pévet P, Buijs RM (2008) Daily rhythms in metabolic liver enzymes and plasma glucose require a balance in the autonomic output to the liver. Endocrinology 149:1914–1925PubMedCrossRefGoogle Scholar
  44. Cassone VM, Speh JC, Card JP, Moore RY (1988) Comparative anatomy of the mammalian hypothalamic suprachiasmatic nucleus. J Biol Rhythms 3:71–91PubMedCrossRefGoogle Scholar
  45. Challet E, Pévet P (2003) Interactions between photic and nonphotic stimuli to synchronize the master circadian clock in mammals. Front Biosci 8:S246–S257PubMedCrossRefGoogle Scholar
  46. Chen MP, Chung FM, Chang DM, Tsai JC, Huang HF, Shin SJ, Lee YJ (2006) Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 91:295–299PubMedCrossRefGoogle Scholar
  47. Cheng MY, Bullock CM, Li C, Lee AG, Bermak JC, Belluzzi J, Weaver DR, Leslie FM, Zhou QY (2002) Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417:405–410PubMedCrossRefGoogle Scholar
  48. Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A (2009) Adipogenesis and WNT signalling. Trends Endocrinol Metab 20:16–24PubMedCrossRefGoogle Scholar
  49. Collu R, Du Ruisseau P, Taché Y, Ducharme JR (1977) Thyrotropin-releasing hormone in rat brain: nyctohemeral variations. Endocrinology 100:1391–1393PubMedCrossRefGoogle Scholar
  50. Cornish S, Cawthorne MA (1978) Fatty acid synthesis in mice during the 24 hr cycle and during meal-feeding. Horm Metab Res 10:286–290PubMedCrossRefGoogle Scholar
  51. Covarrubias L, Uribe RM, Mendez M, Charli JL, Joseph-Bravo P (1988) Neuronal TRH synthesis: developmental and circadian TRH mRNA levels. Biochem Biophys Res Commun 151: 615–622PubMedCrossRefGoogle Scholar
  52. Covarrubias L, Redondo JL, Vargas MA, Uribe RM, Mendez M, Joseph-Bravo P, Charli JL (1994) In vitro TRH release from hypothalamus slices varies during the diurnal cycle. Neurochem Res 19:845–850PubMedCrossRefGoogle Scholar
  53. Csaki A, Kocsis K, Halasz B, Kiss J (2000) Localization of glutamatergic/aspartatergic neurons projecting to the hypothalamic paraventricular nucleus studied by retrograde transport of [3H]D-aspartate autoradiography. Neuroscience 101:637–655PubMedCrossRefGoogle Scholar
  54. Cuesta M, Clesse D, Pévet P, Challet E (2009) From daily behavior to hormonal and neurotransmitters rhythms: comparison between diurnal and nocturnal rat species. Horm Behav 55:338–347PubMedCrossRefGoogle Scholar
  55. Cui LN, Coderre E, Renaud LP (2001) Glutamate and GABA mediate suprachiasmatic nucleus inputs to spinal-projecting paraventricular neurons. Am J Physiol 281:R1283–R1289Google Scholar
  56. Dardente H, Menet JS, Challet E, Tournier BB, Pévet P, Masson-Pévet M (2004) Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents. Mol Brain Res 124:143–151PubMedCrossRefGoogle Scholar
  57. De La Iglesia HO, Blaustein JD, Bittman EL (1995) The suprachiasmatic area in the female hamster projects to neurons containing estrogen receptors and GnRH. Neuroreport 6: 1715–1722PubMedCrossRefGoogle Scholar
  58. De La Iglesia HO, Meyer J, Schwartz WJ (2003) Lateralization of circadian pacemaker output: activation of left- and right-sided luteinizing hormone-releasing hormone neurons involves a neural rather than a humoral pathway. J Neurosci 23:7412–7414PubMedGoogle Scholar
  59. De Vries GJ, Buijs RM, Sluiter AA (1984) Gonadal hormone actions on the morphology of the vasopressinergic innervation of the adult rat brain. Brain Res 298:141–145PubMedCrossRefGoogle Scholar
  60. Drijfhout WJ, Van Der Linde AG, Kooi SE, Grol CJ, Westerink BH (1996) Norepinephrine release in the rat pineal gland: the input from the biological clock measured by in vivo microdialysis. J Neurochem 66:748–755PubMedCrossRefGoogle Scholar
  61. Drijfhout WJ, Brons HF, Oakley N, Hagan RM, Grol CJ, Westerink BH (1997) A microdialysis study on pineal melatonin rhythms in rats after an 8-h phase advance: new characteristics of the underlying pacemaker. Neuroscience 80:233–239PubMedCrossRefGoogle Scholar
  62. Drucker-Colin R, Aguilar-Roblero R, Garcia-Hernandez F, Fernandez-Cancino F, Rattoni FB (1984) Fetal suprachiasmatic nucleus transplants: diurnal rhythm recovery of lesioned rats. Brain Res 311:353–357PubMedCrossRefGoogle Scholar
  63. Earnest DJ, Sladek CD (1986) Circadian rhythms of vasopressin release from individual rat suprachiasmatic explants in vitro. Brain Res 382:129–133PubMedCrossRefGoogle Scholar
  64. Elimam A, Marcus C (2002) Meal timing, fasting and glucocorticoids interplay in serum leptin concentrations and diurnal profile. Eur J Endocrinol 147:181–188PubMedCrossRefGoogle Scholar
  65. Everett JW, Sawyer CH (1950) A 24-hour periodicity in the ‘LH release apparatus’ of female rats, disclosed by barbiturate sedation. Endocrinology 47:198–218PubMedCrossRefGoogle Scholar
  66. Fain JN, Cheema PS, Bahouth SW, Hiler ML (2003) Resistin release by human adipose tissue explants in primary culture. Biochem Biophys Res Commun 300:674–678PubMedCrossRefGoogle Scholar
  67. Farooqi IS (2011) Genetic, molecular and physiological insights into human obesity. Eur J Clin Invest 41:451–455PubMedCrossRefGoogle Scholar
  68. Flier JS, Maratos-Flier E (2010) Lasker lauds leptin. Cell Metab 12:317–320PubMedCrossRefGoogle Scholar
  69. Fliers E, Guldenaar SEF, Wiersinga WM, Swaab DF (1997) Decreased hypothalamic thyrotropin-releasing hormone gene expression in patients with nonthyroidal illness. J Clin Endocrinol Metab 82:4032–4036PubMedCrossRefGoogle Scholar
  70. Fliers E, Alkemade A, Wiersinga WM (2001) The hypothalamic-pituitary-thyroid axis in critical illness. Best Pract Res Clin Endocrinol Metab 15:453–464PubMedCrossRefGoogle Scholar
  71. Forsling ML (1993) Neurohypophysial hormones and circadian rhythm. Ann NY Acad Sci 689: 382–395PubMedCrossRefGoogle Scholar
  72. Francl JM, Kaur G, Glass JD (2010) Regulation of vasoactive intestinal polypeptide release in the suprachiasmatic nucleus circadian clock. Neuroreport 21:1055–1059PubMedCrossRefGoogle Scholar
  73. Fukuda H, Greer MA (1975) The effect of basal hypothalamic deafferentation on the nycthemeral rhythm of plasma TSH. Endocrinology 97:749–752PubMedCrossRefGoogle Scholar
  74. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, Shimomura I (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307:426–430PubMedCrossRefGoogle Scholar
  75. Funabashi T, Shinohara K, Mitsushima D, Kimura F (2000a) Estrogen increases arginine-vasopressin V1a receptor mRNA in the preoptic area of young but not of middle-aged female rats. Neurosci Lett 285:205–208PubMedCrossRefGoogle Scholar
  76. Funabashi T, Shinohara K, Mitsushima D, Kimura F (2000b) Gonadotropin-releasing hormone exhibits circadian rhythm in phase with arginine-vasopressin in co-cultures of the female rat preoptic area and suprachiasmatic nucleus. J Neuroendocrinol 12:521–528PubMedCrossRefGoogle Scholar
  77. Garaulet M, Ordovás JM, Gómez-Abellán P, Martínez JA, Madrid JA (2011) An approximation to the temporal order in endogenous circadian rhythms of genes implicated in human adipose tissue metabolism. J Cell Physiol 226:2075–2080PubMedCrossRefGoogle Scholar
  78. Gavrila A, Peng CK, Chan JL, Mietus JE, Goldberger AL, Mantzoros CS (2003) Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J Clin Endocrinol Metab 88:2838–2843PubMedCrossRefGoogle Scholar
  79. Gibson EM, Humber SA, Jain S et al (2008) Alterations in RFamide-related peptide expression are coordinated with the preovulatory luteinizing hormone surge. Endocrinology 149:4958–4969PubMedCrossRefGoogle Scholar
  80. Gillette MU, Reppert SM (1987) The hypothalamic suprachiasmatic nuclei: circadian patterns of vasopressin secretion and neuronal activity in vitro. Brain Res Bull 19:135–139PubMedCrossRefGoogle Scholar
  81. Goel N, Lee TM, Smale L (1999) Suprachiasmatic nucleus and intergeniculate leaflet in the diurnal rodent Octodon degus: Retinal projections and immunocytochemical characterization. Neuroscience 92:1491–1509PubMedCrossRefGoogle Scholar
  82. Goichot B, Weibel L, Chapotot F, Gronfier C, Piquard F, Brandenberger G (1998) Effect of the shift of the sleep-wake cycle on three robust endocrine markers of the circadian clock. Am J Physiol Endocrinol Metab 275:E243–E248Google Scholar
  83. Graham ES, Littlewood P, Turnbull Y, Mercer JG, Morgan PJ, Barrett P (2005) Neuromedin-U is regulated by the circadian clock in the SCN of the mouse. Eur J Neurosci 21:814–819PubMedCrossRefGoogle Scholar
  84. Greenspan SL, Klibansk A, Schoenfeld D, Ridgeway EC (1986) Pulsatile secretion of thyrotropin in man. J Clin Endocrinol Metab 63:661–668PubMedCrossRefGoogle Scholar
  85. Günther O, Landgraf R, Schuart J, Unger H (1984) Vasopressin in cerebrospinal fluid (CSF) and plasma of conscious rabbits – circadian variations. Exp Clin Endocrinol Diab 83:367–369CrossRefGoogle Scholar
  86. Guo H, Brewer JM, Champhekar A, Harris RB, Bittman EL (2005) Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals. Proc Natl Acad Sci USA 102:3111–3116PubMedCrossRefGoogle Scholar
  87. Hagström-Toft E, Bolinder J, Ungerstedt U, Arner P (1997) A circadian rhythm in lipid mobilization which is altered in IDDM. Diabetologia 40:1070–1078PubMedCrossRefGoogle Scholar
  88. Hahm SH, Eiden LE (1998) Five discrete cis-active domains direct cell type-specific transcription of the vasoactive intestinal peptide (VIP) gene. J Biol Chem 273:17086–17094PubMedCrossRefGoogle Scholar
  89. Halberg N, Wernstedt-Asterholm I, Scherer PE (2008) The adipocyte as an endocrine cell. Endocrinol Metab Clin North Am 37:753–768PubMedCrossRefGoogle Scholar
  90. Hallschmid M, Randeva H, Tan BK, Kern W, Lehnert H (2009) Relationship between cerebrospinal fluid visfatin (PBEF/Nampt) levels and adiposity in humans. Diabetes 58:637–640PubMedCrossRefGoogle Scholar
  91. Harper DG, Stopa EG, Kuo-Leblanc V, Mckee AC, Asayama K, Volicer L, Kowall N, Satlin A (2008) Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia. Brain 131:1609–1617PubMedCrossRefGoogle Scholar
  92. Hastings MH, Herbert J (1986) Neurotoxic lesions of the paraventriculo-spinal projection block the nocturnal rise in pineal melatonin synthesis in the syrian hamster. Neurosci Lett 69:1–6PubMedCrossRefGoogle Scholar
  93. Hayes AL, Xu F, Babineau D, Patel SR (2011) Sleep duration and circulating adipokine levels. Sleep 34:147–152PubMedGoogle Scholar
  94. Hems DA, Rath EA, Verrinder TR (1975) Fatty acid synthesis in liver and adipose tissue of normal and genetically obese (ob/ob) mice during the 24-hour cycle. Biochem J 150:167–173PubMedGoogle Scholar
  95. Hermes MLHJ, Coderre EM, Buijs RM, Renaud LP (1996) GABA and glutamate mediate rapid neurotransmission from suprachiasmatic nucleus to hypothalamic paraventricular nucleus in the rat. J Physiol 496:749–757PubMedGoogle Scholar
  96. Hermes MLHJ, Ruijter JM, Klop A, Buijs RM, Renaud LP (2000) Vasopressin increases GABAergic inhibition of rat hypothalamic paraventricular nucleus neurons in vitro. J Neurophysiol 83:705–711PubMedGoogle Scholar
  97. Herzog ED, Geusz ME, Khalsa SBS, Straume M, Block GD (1997) Circadian rhythms in mouse suprachiasmatic nucleus explants on multi-microelectrode plates. Brain Res 757:285–290PubMedCrossRefGoogle Scholar
  98. Hilton MF, Umali MU, Czeisler CA, Wyatt JK, Shea SA (2000) Endogenous circadian control of the human autonomic nervous system. Comput Cardiol 27:197–200PubMedGoogle Scholar
  99. Hofman MA, Swaab DF (1994) Alterations in circadian rhythmicity of the vasopressin-producing neurons of the human suprachiasmatic nucleus (SCN) with aging. Brain Res 651:134–142PubMedCrossRefGoogle Scholar
  100. Hoorneman EMD, Buijs RM (1982) Vasopressin fiber pathways in the rat brain following suprachiasmatic nucleus lesioning. Brain Res 243:235–241PubMedCrossRefGoogle Scholar
  101. Houghton SG, Zarroug AE, Duenes JA, Fernandez-Zapico ME, Sarr MG (2006) The diurnal periodicity of hexose transporter mRNA and protein levels in the rat jejunum: role of vagal innervation. Surgery 139:542–549PubMedCrossRefGoogle Scholar
  102. Inouye SIT, Kawamura H (1979) Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc Natl Acad Sci USA 76:5962–5966PubMedCrossRefGoogle Scholar
  103. Ishida A, Mutoh T, Ueyama T et al (2005) Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab 2:297–307PubMedCrossRefGoogle Scholar
  104. Jasper MS, Engeland WC (1994) Splanchnic neural activity modulates ultradian and circadian rhythms in adrenocortical secretion in awake rats. Neuroendocrinology 59:97–109PubMedCrossRefGoogle Scholar
  105. Jin XW, Shearman LP, Weaver DR, Zylka MJ, De Vries GJ, Reppert SM (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96: 57–68PubMedCrossRefGoogle Scholar
  106. Johnson RF, Smale L, Moore RY, Morin LP (1989) Paraventricular nucleus efferents mediating photoperiodism in male golden hamsters. Neurosci Lett 98:85–90PubMedCrossRefGoogle Scholar
  107. Jolkonen J, Tuomisto L, Van Wimersma Greidanus TB, Riekkinen PJ (1988) Vasopressin levels in the cerebrospinal fluid of rats with lesions of the paraventricular and suprachiasmatic nuclei. Neurosci Lett 86:184–188CrossRefGoogle Scholar
  108. Jordan D, Rousset B, Perrin F, Fournier M, Orgiazzi J (1980) Evidence for circadian variations in serum thyrotropin, 3,5,3′-triiodothyronine, and thyroxine in the rat. Endocrinology 107: 1245–1248PubMedCrossRefGoogle Scholar
  109. Kalsbeek A, Buijs RM (2002) Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell Tissue Res 309: 109–118PubMedCrossRefGoogle Scholar
  110. Kalsbeek A, Strubbe JH (1998) Circadian control of insulin secretion is independent of the temporal distribution of feeding. Physiol Behav 63:553–560PubMedCrossRefGoogle Scholar
  111. Kalsbeek A, Buijs RM, Van Heerikhuize JJ, Arts M, Van Der Woude TP (1992) Vasopressin-containing neurons of the suprachiasmatic nuclei inhibit corticosterone release. Brain Res 580: 62–67PubMedCrossRefGoogle Scholar
  112. Kalsbeek A, Teclemariam-Mesbah R, Pévet P (1993a) Efferent projections of the suprachiasmatic nucleus in the golden hamster (Mesocricetus auratus). J Comp Neurol 332:293–314PubMedCrossRefGoogle Scholar
  113. Kalsbeek A, Rikkers M, Vivien-Roels B, Pévet P (1993b) Vasopressin and vasoactive intestinal peptide infused in the paraventricular nucleus of the hypothalamus elevate plasma melatonin levels. J Pineal Res 15:46–52PubMedCrossRefGoogle Scholar
  114. Kalsbeek A, Buijs RM, Engelmann M, Wotjak CT, Landgraf R (1995) In vivo measurement of a diurnal variation in vasopressin release in the rat suprachiasmatic nucleus. Brain Res 682: 75–82PubMedCrossRefGoogle Scholar
  115. Kalsbeek A, Drijfhout WJ, Westerink BHC, Van Heerikhuize JJ, Van Der Woude T, Van Der Vliet J, Buijs RM (1996a) GABA receptors in the region of the dorsomedial hypothalamus of rats are implicated in the control of melatonin. Neuroendocrinology 63:69–78PubMedCrossRefGoogle Scholar
  116. Kalsbeek A, Van Der Vliet J, Buijs RM (1996b) Decrease of endogenous vasopressin release necessary for expression of the circadian rise in plasma corticosterone: a reverse microdialysis study. J Neuroendocrinol 8:299–307PubMedCrossRefGoogle Scholar
  117. Kalsbeek A, Van Heerikhuize JJ, Wortel J, Buijs RM (1996c) A diurnal rhythm of stimulatory input to the hypothalamo-pituitary-adrenal system as revealed by timed intrahypothalamic administration of the vasopressin V1 antagonist. J Neurosci 16:5555–5565PubMedGoogle Scholar
  118. Kalsbeek A, Cutrera RA, Van Heerikhuize JJ, Van Der Vliet J, Buijs RM (1999) GABA release from SCN terminals is necessary for the light-induced inhibition of nocturnal melatonin release in the rat. Neuroscience 91:453–461PubMedCrossRefGoogle Scholar
  119. Kalsbeek A, Barassin S, van Heerikhuize JJ, van der Vliet J, Buijs RM (2000a) Restricted daytime feeding attenuates reentrainment of the circadian melatonin rhythm after an 8-h phase advance of the light–dark cycle. J Biol Rhythms 15:57–66PubMedCrossRefGoogle Scholar
  120. Kalsbeek A, Fliers E, Franke AN, Wortel J, Buijs RM (2000b) Functional connections between the suprachiasmatic nucleus and the thyroid gland as revealed by lesioning and viral tracing techniques in the rat. Endocrinology 141:3832–3841PubMedCrossRefGoogle Scholar
  121. Kalsbeek A, Garidou ML, Palm IF, Van Der Vliet J, Simonneaux V, Pévet P, Buijs RM (2000c) Melatonin sees the light: blocking GABA-ergic transmission in the paraventricular nucleus induces daytime secretion of melatonin. Eur J Neurosci 12:3146–3154PubMedCrossRefGoogle Scholar
  122. Kalsbeek A, Fliers E, Romijn JA, La Fleur SE, Wortel J, Bakker O, Endert E, Buijs RM (2001) The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology 142:2677–2685PubMedCrossRefGoogle Scholar
  123. Kalsbeek A, La Fleur SE, Van Heijningen C, Buijs RM (2004) Suprachiasmatic GABAergic inputs to the paraventricular nucleus control plasma glucose concentrations in the rat via sympathetic innervation of the liver. J Neurosci 24:7604–7613PubMedCrossRefGoogle Scholar
  124. Kalsbeek A, Buijs RM, van Schaik R, Kaptein E, Visser TJ, Doulabi BZ, Fliers E (2005) Daily variations in type II iodothyronine deiodinase activity in the rat brain as controlled by the biological clock. Endocrinology 146:1418–1427PubMedCrossRefGoogle Scholar
  125. Kalsbeek A, Palm IF, La Fleur SE, Scheer FAJL, Perreau-Lenz S, Ruiter M, Kreier F, Cailotto C, Buijs RM (2006) SCN outputs and the hypothalamic balance of life. J Biol Rhythms 21: 458–469PubMedCrossRefGoogle Scholar
  126. Kalsbeek A, Foppen E, Schalij I, Van Heijningen C, van der Vliet J, Fliers E, Buijs RM (2008a) Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate. PLoS One 3:e3194PubMedCrossRefGoogle Scholar
  127. Kalsbeek A, Verhagen LA, Schalij I, Foppen E, Saboureau M, Bothorel B, Buijs RM, Pévet P (2008b) Opposite actions of hypothalamic vasopressin on circadian corticosterone rhythm in nocturnal versus diurnal species. Eur J Neurosci 27:818–827PubMedCrossRefGoogle Scholar
  128. Kalsbeek A, Scheer FA, Perreau-Lenz S, La Fleur SE, Yi CX, Fliers E, Buijs RM (2011) Circadian disruption and SCN control of energy metabolism. FEBS Lett 585:1412–1426PubMedCrossRefGoogle Scholar
  129. Kappers JA (1960) The development, topographical relations and innervation of the epiphysis cerebri in the albino rat. Z Zellforsch 52:163–215PubMedCrossRefGoogle Scholar
  130. Kennaway DJ, Owens JA, Voultsios A, Wight N (2011) Adipokines and adipocyte function in clock mutant mice that retain melatonin rhythmicity. Obesity 15:1–11Google Scholar
  131. Khan AR, Kauffman AS (2011) The role of kisspeptin and RFRP-3 neurons in the circadian-timed preovulatory luteinizing hormone surge. J Neuroendocrinol 24:131–143CrossRefGoogle Scholar
  132. Kita Y, Shiozawa M, Jin WH, Majewski RR, Besharse JC, Greene AS, Jacob HJ (2002) Implications of circadian gene expression in kidney, liver and the effects of fasting on pharmacogenomic studies. Pharmacogenetics 12:55–65PubMedCrossRefGoogle Scholar
  133. Klein DC, Moore RY (1979) Pineal N-acetyltransferase and hydroxyindole-o-methyl-transferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res 174: 245–262PubMedCrossRefGoogle Scholar
  134. Klein DC, Weller JL, Moore RY (1971) Melatonin metabolism: neural regulation of pineal serotonin: acetyl coenzyme A N-acetyltransferase activity. Proc Natl Acad Sci USA 68: 3107–3110PubMedCrossRefGoogle Scholar
  135. Klein DC, Smoot R, Weller JL et al (1983) Lesions of the paraventricular nucleus area of the hypothalamus disrupt the suprachiasmatic-spinal cord circuit in the melatonin rhythm generating system. Brain Res Bull 10:647–652PubMedCrossRefGoogle Scholar
  136. Kneisley LW, Moskowitz MA, Lynch HG (1978) Cervical spinal cord lesions disrupt the rhythm in human melatonin excretion. J Neural Transm Suppl 13:311–323PubMedGoogle Scholar
  137. Kraves S, Weitz CJ (2006) A role for cardiotrophin-like cytokine in the circadian control of mammalian locomotor activity. Nat Neurosci 9:212–219PubMedCrossRefGoogle Scholar
  138. Kreier F (2005) Dual sympathetic and parasympathetic hypothalamic output to white adipose tissue. In: Autonomic nervous control of white adipose tissue, Chap 4. Dissertation. University of Amsterdam, AmsterdamGoogle Scholar
  139. Kreier F, Fliers E, Voshol PJ, Van Eden CG, Havekes LM, Kalsbeek A, Van Heijningen C, Sluiter AA, Mettenleiter TC, Romijn JA, Sauerwein H, Buijs RM (2002) Selective parasympathetic innervation of subcutaneous and intra-abdominal fat – functional implications. J Clin Invest 110:1243–1250PubMedGoogle Scholar
  140. Kreier F, Kap YS, Mettenleiter T, Van Heijningen C, Van Der Vliet J, Kalsbeek A, Sauerwein H, Fliers E, Romijn JA, Buijs RM (2006) Tracing from fat tissue, liver, and pancreas: a neuroanatomical framework for the role of the brain in Type2 diabetes. Endocrinology 147:1140–1147PubMedCrossRefGoogle Scholar
  141. La Fleur SE (2003) Daily rhythms in glucose metabolism: suprachiasmatic nucleus output to peripheral tissue. J Neuroendocrinol 15:315–322PubMedCrossRefGoogle Scholar
  142. La Fleur SE, Kalsbeek A, Wortel J, Buijs RM (2000) Polysynaptic neural pathways between the hypothalamus, including the suprachiasmatic nucleus, and the liver. Brain Res 871:50–56PubMedCrossRefGoogle Scholar
  143. Larsen PJ, Enquist LW, Card JP (1998) Characterization of the multisynaptic neuronal control of the rat pineal gland using viral transneuronal tracing. Eur J Neurosci 10:128–145PubMedCrossRefGoogle Scholar
  144. Lee JW, Erskine MS (2000) Pseudorabies virus tracing of neural pathways between the uterine cervix and CNS: effects of survival time, estrogen treatment, rhizotomy, and pelvic nerve transection. J Comp Neurol 418:484–503PubMedCrossRefGoogle Scholar
  145. Lehman MN, Bittman EL, Newman SW (1984) Role of the hypothalamic paraventricular nucleus in neuroendocrine responses to daylength in the golden hamster. Brain Res 308:25–32PubMedCrossRefGoogle Scholar
  146. Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, Bittman EL (1987) Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci 7:1626–1638PubMedGoogle Scholar
  147. Lerner ABT, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80:2587CrossRefGoogle Scholar
  148. Lilley TR, Wotus C, Taylor D, Lee JM, de la Iglesia HO (2012) Circadian regulation of cortisol release in behaviorally split golden hamsters. Endocrinology 153(2):732–738PubMedCrossRefGoogle Scholar
  149. Liu RH, Mizuta M, Matsukura S (2004) The expression and functional role of nicotinic acetylcholine receptors in rat adipocytes. J Pharmacol Exp Ther 310:52–58PubMedCrossRefGoogle Scholar
  150. Loh DH, Abad C, Colwell CS, Waschek JA (2008) Vasoactive intestinal peptide is critical for circadian regulation of glucocorticoids. Neuroendocrinology 88:246–255PubMedCrossRefGoogle Scholar
  151. Lynch HJ (1971) Diurnal oscillations in pineal melatonin content. Life Sci 10:791–795CrossRefGoogle Scholar
  152. Martino E, Bambini G, Vaudaga G, Breccia M, Baschieri L (1985) Effects of continuous light and dark exposure on hypothalamic thyrotropin-releasing hormone in rats. J Endocrinol Invest 8: 31–33PubMedCrossRefGoogle Scholar
  153. Maury E, Brichard SM (2010) Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 314:1–16PubMedCrossRefGoogle Scholar
  154. Messager S (2005) Kisspeptin and its receptor: new gatekeepers of puberty. J Neuroendocrinol 17:687–688PubMedCrossRefGoogle Scholar
  155. Meyer-Bernstein EL, Jetton AE, Matsumoto SI, Markuns JF, Lehman MN, Bittman EL (1999) Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140:207–218PubMedCrossRefGoogle Scholar
  156. Mikkelsen JD, Simonneaux V (2009) The neuroanatomy of the kisspeptin system in the mammalian brain. Peptides 30:26–33PubMedCrossRefGoogle Scholar
  157. Miller BH, Olson SL, Levine JE, Turek FW, Horton TH, Takahashi JS (2006) Vasopressin regulation of the proestrous luteinizing hormone surge in wild-type and clock mutant mice. Biol Reprod 75:778–784PubMedCrossRefGoogle Scholar
  158. Moore RY (1978) Neural control of pineal function in mammals and birds. J Neural Transm Suppl 13:47–58PubMedGoogle Scholar
  159. Moore RM (1996a) Entrainment pathways and the functional organization of the circadian system. Prog Brain Res 111:103–119PubMedCrossRefGoogle Scholar
  160. Moore RY (1996b) Neural control of the pineal gland. Behav Brain Res 73:125–130PubMedCrossRefGoogle Scholar
  161. Moore RY, Klein DC (1974) Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity. Brain Res 71:17–33PubMedCrossRefGoogle Scholar
  162. Moore RY, Speh JC (1993) GABA Is the principal neurotransmitter of the circadian system. Neurosci Lett 150:112–116PubMedCrossRefGoogle Scholar
  163. Morin LP, Shivers KY, Blanchard JH, Muscat L (2006) Complex organization of mouse and rat suprachiasmatic nucleus. Neuroscience 137:1285–1297PubMedCrossRefGoogle Scholar
  164. Nakamura W, Honma S, Shirakawa T, Honma K (2001) Regional pacemakers composed of multiple oscillator neurons in the rat suprachiasmatic nucleus. Eur J Neurosci 14:666–674PubMedCrossRefGoogle Scholar
  165. Nonogaki K (2000) New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 43:533–549PubMedCrossRefGoogle Scholar
  166. Nunez AA, Brown MH, Youngstrom TG (1985) Hypothalamic circuits involved in the regulation of seasonal and circadian rhythms in male golden hamsters. Brain Res Bull 15:149–153PubMedCrossRefGoogle Scholar
  167. Oishi K, Miyazaki K, Kadota K, Kikuno R, Nagase T, Atsumi G, Ohkura N, Azama T, Mesaki M, Yukimasa S, Kobayashi H, Iitaka C, Umehara T, Horikoshi M, Kudo T, Shimizu Y, Yano M, Monden M, Machida K, Matsuda J, Horie S, Todo T, Ishida N (2002) Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J Biol Chem 278: 41519–41527CrossRefGoogle Scholar
  168. Okamura H, Berod A, Julien JF, Geffard M, Kitahama K, Mallet J, Bobillier P (1989) Demonstration of GABAergic cell bodies in the suprachiasmatic nucleus: in situ hybridization of glutamic acid decarboxylase (GAD) mRNA and immunocytochemistry of GAD and GABA. Neurosci Lett 102:131–136PubMedCrossRefGoogle Scholar
  169. Olcese J, Reuss S, Steinlechner S (1987) Electrical stimulation of the hypothalamic nucleus paraventricularis mimics the effects of light on pineal melatonin synthesis. Life Sci 40: 455–459PubMedCrossRefGoogle Scholar
  170. Oliver P, Ribot J, Rodríguez AM, Sánchez J, Picó C, Palou A (2006) Resistin as a putative modulator of insulin action in the daily feeding/fasting rhythm. Eur J Physiol 452:260–267CrossRefGoogle Scholar
  171. Oster H, Damerow S, Kiessling S et al (2006) The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 4:163–173PubMedCrossRefGoogle Scholar
  172. Ostrowski NL, Lolait SJ, Young WS (1994) Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature. Endocrinology 135:1511–1528PubMedCrossRefGoogle Scholar
  173. Ottenweller JE, Hedge GA (1982) Diurnal variations of plasma thyrotropin, thyroxine, and triiodothyronine in female rats are phase shifted after inversion of the photoperiod. Endocrinology 111:509–514PubMedCrossRefGoogle Scholar
  174. Otway DT, Frost G, Johnston JD (2009) Circadian rhythmicity in murine pre-adipocyte and adipocyte cells. Chronobiol Int 26:1340–1354PubMedCrossRefGoogle Scholar
  175. Palm IF, Van Der Beek EM, Wiegant VM, Buijs RM, Kalsbeek A (1999) Vasopressin induces an LH surge in ovariectomized, estradiol-treated rats with lesion of the suprachiasmatic nucleus. Neuroscience 93:659–666PubMedCrossRefGoogle Scholar
  176. Palm IF, Van Der Beek EM, Wiegant VM, Buijs RM, Kalsbeek A (2001) The stimulatory effect of vasopressin on the luteinizing hormone surge in ovariectomized, estradiol-treated rats is time-dependent. Brain Res 901:109–116PubMedCrossRefGoogle Scholar
  177. Parker DC, Pekary AE, Hershman JM (1976) Effect of normal and reversed sleep-wake cycles upon nyctohemeral rhythmicity of plasma thyrotropin: evidence suggestive of an inhibitory influence in sleep. J Clin Endocrinol Metab 43:318–329PubMedCrossRefGoogle Scholar
  178. Perreau-Lenz S, Kalsbeek A, Garidou ML, Wortel J, Van Der Vliet J, Van Heijningen C, Simonneaux V, Pévet P, Buijs RM (2003) Suprachiasmatic control of melatonin synthesis in rats: inhibitory and stimulatory mechanisms. Eur J Neurosci 17:221–228PubMedCrossRefGoogle Scholar
  179. Perreau-Lenz S, Kalsbeek A, Pévet P, Buijs RM (2004) Glutamatergic clock output stimulates melatonin synthesis at night. Eur J Neurosci 19:318–324PubMedCrossRefGoogle Scholar
  180. Pickard GE, Turek FW (1983) The hypothalamic paraventricular nucleus mediates the photoperiodic control of reproduction but not the effects of light on the circadian rhythm of activity. Neurosci Lett 43:67–72PubMedCrossRefGoogle Scholar
  181. Pickard GE, Kahn R, Silver R (1984) Splitting of the circadian rhythm of body temperature in the golden hamster. Physiol Behav 32:763–766PubMedCrossRefGoogle Scholar
  182. Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: a clock for all seasons. J Comp Physiol A 106:333–355CrossRefGoogle Scholar
  183. Poulos SP, Hausman DB, Hausman GJ (2010) The development and endocrine functions of adipose tissue. Mol Cell Endocrinol 323:20–34PubMedCrossRefGoogle Scholar
  184. Prosser RA, Bergeron HE (2003) Leptin phase-advances the rat suprachiasmatic circadian clock in vitro. Neurosci Lett 336:139–142PubMedCrossRefGoogle Scholar
  185. Ptitsyn AA, Zvonic S, Conrad SA, Scott LK, Mynatt RL, Gimble JM (2006) Circadian clocks are resounding in peripheral tissues. PLoS Comp Biol 2:e16CrossRefGoogle Scholar
  186. Puschel GP (2004) Control of hepatocyte metabolism by sympathetic and parasympathetic hepatic nerves. Anat Rec 280A:854CrossRefGoogle Scholar
  187. Rajala MW, Qi Y, Patel HR, Takahashi N, Banerjee R, Pajvani UB, Sinha MK, Gingerich RL, Scherer PE, Ahima RS (2004) Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting. Diabetes 53:1671–1679PubMedCrossRefGoogle Scholar
  188. Ralph CL, Mull D, Lynch HJ, Hedlund L (1971) A melatonin rhythm persists in rat pineals in darkness. Endocrinology 89:1361–1366PubMedCrossRefGoogle Scholar
  189. Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978PubMedCrossRefGoogle Scholar
  190. Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, Takahashi JS, Imai S, Bass J (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–654PubMedCrossRefGoogle Scholar
  191. Reiter RJ, King TS, Richardson BA, Hurlbut EC (1982) Studies on pineal melatonin levels in a diurnal species, the eastern chipmunk (Tamias striatus): effects of light at night, propranolol administration or superior cervical ganglionectomy. J Neural Transm 54:275–284PubMedCrossRefGoogle Scholar
  192. Reppert SM, Artman HG, Swaminathan S, Fisher DA (1981) Vasopressin exhibits a rhythmic daily pattern in cerebrospinal fluid but not in blood. Science 213:1256–1257PubMedCrossRefGoogle Scholar
  193. Reppert SM, Schwartz WJ, Uhl GR (1987) Arginine vasopressin: a novel peptide rhythm in cerebrospinal fluid. Trends Neurosci 10:76–80CrossRefGoogle Scholar
  194. Reuss S, Olcese J, Vollrath L (1985) Electrical stimulation of the hypothalamic paraventricular nuclei inhibits pineal melatonin synthesis in male rats. Neuroendocrinology 41:192–196PubMedCrossRefGoogle Scholar
  195. Reuss S, Hurlbut EC, Speh JC, Moore RY (1989) Immunohistochemical evidence for the presence of neuropeptides in the hypothalamic suprachiasmatic nucleus of ground squirrels. Anat Rec 225:341–346PubMedCrossRefGoogle Scholar
  196. Reuss S, Stehle J, Schröder H, Vollrath L (1990) The role of the hypothalamic paraventricular nuclei for the regulation of pineal melatonin synthesis: new aspects derived from the vasopressin-deficient Brattleboro rat. Neurosci Lett 109:196–200PubMedCrossRefGoogle Scholar
  197. Riemersma-van der Lek RF, Swaab DF, Twisk J, Hol EM, Hoogendijk WJ, Van Someren EJ (2008) Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. JAMA 299:2642–2655PubMedCrossRefGoogle Scholar
  198. Robinson ICAF, Coombes JE (1993) Neurohypophysial peptides in cerebrospinal fluid: an update. Ann NY Acad Sci 689:269–283PubMedCrossRefGoogle Scholar
  199. Robinson BG, Frim DM, Schwartz WJ, Majzoub JA (1988) Vasopressin mRNA in the suprachiasmatic nuclei: daily regulation of polyadenylate tail length. Science 241:342–344PubMedCrossRefGoogle Scholar
  200. Roelfsema F, Pereira AM, Veldhuis JD, Adriaanse R, Endert E, Fliers E, Romijn JA (2009) Thyrotropin secretion profiles are not different in men and women. J Clin Endocrinol Metab 94:3964–3967PubMedCrossRefGoogle Scholar
  201. Roelfsema F, Pereira AM, Adriaanse R, Endert E, Fliers E, Romijn JA, Veldhuis JD (2010) Thyrotropin secretion in mild and severe primary hypothyroidism is distinguished by amplified burst mass and basal secretion with increased spikiness and approximate entropy. J Clin Endocrinol Metab 95:928–934PubMedCrossRefGoogle Scholar
  202. Roenneberg T, Kantermann T, Juda M, Vetter C, Allebrandt KV (2013) Light and the human circadian clock. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, HeidelbergCrossRefGoogle Scholar
  203. Romijn JA, Wiersinga WM (1990) Decreased nocturnal surge of thyrotropin in nonthyroidal illness. J Clin Endocrinol Metab 70:35–42PubMedCrossRefGoogle Scholar
  204. Romijn JA, Adriaanse R, Brabant G, Prank K, Endert E, Wiersinga WM (1990) Pulsatile secretion of thyrotropin during fasting: a decrease of thyrotropin pulse amplitude. J Clin Endocrinol Metab 70:1631–1636PubMedCrossRefGoogle Scholar
  205. Rookh HV, Azukizawa M, DiStefano JJ III, Ogihara T, Hershman JM (1979) Pituitary-thyroid hormone periodicities in serially sampled plasma of unanesthetized rats. Endocrinology 104:851–856PubMedCrossRefGoogle Scholar
  206. Saeb-Parsy K, Dyball REJ (2003) Defined cell groups in the rat suprachiasmatic nucleus have different day/night rhythms of single-unit activity in vivo. J Biol Rhythms 18:26–42PubMedCrossRefGoogle Scholar
  207. Schaap J, Albus H, VanderLeest HT, Eilers PH, Detari L, Meijer JH (2003) Heterogeneity of rhythmic suprachiasmatic nucleus neurons: implications for circadian waveform and photoperiodic encoding. Proc Natl Acad Sci USA 100:15994–15999PubMedCrossRefGoogle Scholar
  208. Scheer FA, Ter Horst GJ, van Der Vliet J, Buijs RM (2001) Physiological and anatomic evidence for regulation of the heart by suprachiasmatic nucleus in rats. Am J Physiol 280:H1391–H1399Google Scholar
  209. Scheer FA, Van Doornen LJ, Buijs RM (2004a) Light and diurnal cycle affect autonomic cardiac balance in human; possible role for the biological clock. Auton Neurosci 110:44–48PubMedCrossRefGoogle Scholar
  210. Scheer FA, Van Montfrans GA, van Someren EJ, Mairuhu G, Buijs RM (2004b) Daily nighttime melatonin reduces blood pressure in male patients with essential hypertension. Hypertension 43:192–197PubMedCrossRefGoogle Scholar
  211. Scheer FA, Zeitzer JM, Ayas NT, Brown R, Czeisler CA, Shea SA (2006) Reduced sleep efficiency in cervical spinal cord injury; association with abolished night time melatonin secretion. Spinal Cord 44:78–81PubMedCrossRefGoogle Scholar
  212. Scheer FA, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 106:4453–4458PubMedCrossRefGoogle Scholar
  213. Scheer FAJL, Chan JL, Fargnoli J, Chamberland J, Arampatzi K, Shea SA, Blackburn GL, Mantzoros CS (2010) Day/night variations of high-molecular-weight adiponectin and lipocalin-2 in healthy men studied under fed and fasted conditions. Diabetologia 53:2401–2405PubMedCrossRefGoogle Scholar
  214. Schröder H, Reuss S, Stehle J, Vollrath L (1988a) Intra-arterially administered vasopressin inhibits nocturnal pineal melatonin synthesis in the rat. Comp Biochem Physiol 4:651–653CrossRefGoogle Scholar
  215. Schröder H, Stehle J, Henschel M (1988b) Twenty-four hour pineal melatonin synthesis in the vasopressin-deficient Brattleboro rat. Brain Res 459:328–332PubMedCrossRefGoogle Scholar
  216. Schröder H, Stehle J, Moller M (1989) Stimulation of serotonin-N-acetyltransferase activity in the pineal gland of the mongolian gerbil (Meriones unguiculatus) by intracerebroventricular injection of vasoactive intestinal polypeptide. J Pineal Res 7:393–399PubMedCrossRefGoogle Scholar
  217. Schwartz WJ, Gainer H (1977) Suprachiasmatic nucleus: use of 14C-labeled deoxyglucose uptake as a functional marker. Science 197:1089–1091PubMedCrossRefGoogle Scholar
  218. Schwartz DR, Lazar MA (2011) Human resistin: found in translation from mouse to man. Trends Endocrinol Metab 22:259–265PubMedGoogle Scholar
  219. Schwartz WJ, Reppert SM (1985) Neural regulation of the circadian vasopressin rhythm in cerebrospinal fluid: a pre-eminent role for the suprachiasmatic nuclei. J Neurosci 5:2771–2778PubMedGoogle Scholar
  220. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 406:661–671CrossRefGoogle Scholar
  221. Seckl JR, Lightman SL (1987) Diurnal rhythm of vasopressin but not of oxytocin in the cerebrospinal fluid of the goat: lack of association with plasma cortisol rhythm. J Endocrinol 114:477–482PubMedCrossRefGoogle Scholar
  222. Shea SA, Hilton MF, Orlova C, Ayers RT, Mantzoros CS (2005) Independent circadian and sleep/wake regulation of adipokines and glucose in humans. J Clin Endocrinol Metab 90:2537–2544PubMedCrossRefGoogle Scholar
  223. Shibata S, Oomura Y, Kita H, Hattori K (1982) Circadian rhythmic changes of neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice. Brain Res 247:154–158PubMedCrossRefGoogle Scholar
  224. Shimazu T (1987) Neuronal regulation of hepatic glucose metabolism in mammals. Diabetes Metab Rev 3:185–206PubMedCrossRefGoogle Scholar
  225. Shirasaka T, Nakazato M, Matsukura S, Takasaki M, Kannan H (1999) Sympathetic and cardiovascular actions of orexins in conscious rats. Am J Physiol 277:R1780–R1785PubMedGoogle Scholar
  226. Shiuchi T, Haque MS, Okamoto S, Inoue T, Kageyama H, Lee S, Toda C, Suzuki A, Bachman ES, Kim YB, Sakurai T, Yanagisawa M, Shioda S, Imoto K, Minokoshi Y (2009) Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system. Cell Metab 10:466–480PubMedCrossRefGoogle Scholar
  227. Silver R, Lesauter J, Tresco PA, Lehman M (1996) A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382: 810–813PubMedCrossRefGoogle Scholar
  228. Simon C, Gronfier C, Schlienger JL, Brandenberger G (1998) Circadian and ultradian variations of leptin in normal man under continuous enteral nutrition: relationship to sleep and body temperature. J Clin Endocrinol Metab 83:1893–1899PubMedCrossRefGoogle Scholar
  229. Smale L, Boverhof J (1999) The suprachiasmatic nucleus and intergeniculate leaflet of Arvicanthis niloticus, a diurnal murid rodent from east Africa. J Comp Neurol 403:190–208PubMedCrossRefGoogle Scholar
  230. Smale L, Cassone VM, Moore RY, Morin LP (1989) Paraventricular nucleus projections mediating pineal melatonin and gonadal responses to photoperiod in the hamster. Brain Res Bull 22:263–269PubMedCrossRefGoogle Scholar
  231. Södersten P, Henning M, Melin P, Ludin S (1983) Vasopressin alters female sexual behaviour by acting on the brain independently of alterations in blood pressure. Nature 301:608–610PubMedCrossRefGoogle Scholar
  232. Södersten P, De Vries GJ, Buijs RM, Melin P (1985) A daily rhythm in behavioral vasopressin sensitivity and brain vasopressin concentrations. Neurosci Lett 58:37–41PubMedCrossRefGoogle Scholar
  233. Södersten P, Boer GJ, De Vries GJ, Buijs RM, Melin P (1986) Effects of vasopressin on female sexual behavior in male rat. Neurosci Lett 69:188–191PubMedCrossRefGoogle Scholar
  234. Sofroniew MV, Weindl A (1980) Identification of parvocellular vasopressin and neurophysin neurons in the suprachiasmatic nucleus of a variety of mammals including primates. J Comp Neurol 193:659–675PubMedCrossRefGoogle Scholar
  235. Stark RI, Daniel SS (1989) Circadian rhythm of vasopressin levels in cerebrospinal fluid of the fetus: effect of continuous light. Endocrinology 124:3095–3101PubMedCrossRefGoogle Scholar
  236. Stehle J, Reuss S, Riemann R, Seidel A, Vollrath L (1991) The role of arginine-vasopressin for pineal melatonin synthesis in the rat: involvement of vasopressinergic receptors. Neurosci Lett 123:131–134PubMedCrossRefGoogle Scholar
  237. Stephan FK, Berkley KJ, Moss RL (1981) Efferent connections of the rat suprachiasmatic nucleus. Neuroscience 6:2625–2641PubMedCrossRefGoogle Scholar
  238. Stopa EG, King JC, Lydic R, Schoene WC (1984) Human brain contains vasopressin and vasoactive intestinal polypeptide neuronal subpopulations in the suprachiasmatic region. Brain Res 297:159–163PubMedCrossRefGoogle Scholar
  239. Strubbe JH, Alingh Prins AJ, Bruggink J, Steffens AB (1987) Daily variation of food-induced changes in blood glucose and insulin in the rat and the control by the suprachiasmatic nucleus and the vagus nerve. J Auton Nerv Syst 20:113–119PubMedCrossRefGoogle Scholar
  240. Stryjecki C, Mutch DM (2011) Fatty acid-gene interactions, adipokines and obesity. Eur J Clin Nutr 65:285–297PubMedCrossRefGoogle Scholar
  241. Sun X, Rusak B, Semba K (2000) Electrophysiology and pharmacology of projections from the suprachiasmatic nucleus to the ventromedial preoptic area in rat. Neuroscience 98:715–728PubMedCrossRefGoogle Scholar
  242. Sun X, Whitefield S, Rusak B, Semba K (2001) Electrophysiological analysis of suprachiasmatic nucleus projections to the ventrolateral preoptic area in the rat. Eur J Neurosci 14:1257–1274PubMedCrossRefGoogle Scholar
  243. Swaab DF, Pool CW, Nijveldt F (1975) Immunofluorescence of vasopressin and oxytocin in the rat hypothalamo-neurohypophyseal system. J Neural Transm 36:195–215PubMedCrossRefGoogle Scholar
  244. Swaab DF, Fliers E, Partiman TS (1985) The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 342:37–44PubMedCrossRefGoogle Scholar
  245. Swann JM, Turek FW (1985) Multiple circadian oscillator regulate the timing of behavioral and endocrine rhythms in female golden hamsters. Science 228:898–900PubMedCrossRefGoogle Scholar
  246. Swanson LW, Cowan WM (1975) The efferent connections of the suprachiasmatic nucleus of the hypothalamus. J Comp Neurol 160:1–12PubMedCrossRefGoogle Scholar
  247. Swanson LW, Kuypers HGJM (1980) The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol 194:555–570PubMedCrossRefGoogle Scholar
  248. Takahashi JS, Hong HK, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9:764–775PubMedCrossRefGoogle Scholar
  249. Teclemariam-Mesbah R, Kalsbeek A, Pévet P, Buijs RM (1997) Direct vasoactive intestinal polypeptide-containing projection from the suprachiasmatic nucleus to spinal projecting hypothalamic paraventricular neurons. Brain Res 748:71–76PubMedCrossRefGoogle Scholar
  250. Teclemariam-Mesbah R, Ter Horst GJ, Postema F, Wortel J, Buijs RM (1999) Anatomical demonstration of the suprachiasmatic nucleus – pineal pathway. J Comp Neurol 406:171–182PubMedCrossRefGoogle Scholar
  251. Tessonneaud A, Locatelli A, Caldani M, Viguier-Martinez MC (1995) Bilateral lesions of the suprachiasmatic nuclei alter the nocturnal melatonin secretion in sheep. J Neuroendocrinol 7: 145–152PubMedCrossRefGoogle Scholar
  252. Tousson E, Meissl H (2004) Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus. J Neurosci 24:2983–2988PubMedCrossRefGoogle Scholar
  253. Trujillo ME, Scherer PE (2006) Adipose tissue-derived factors: impact on health and disease. Endocr Rev 27:762–778PubMedGoogle Scholar
  254. Turer AT, Khera A, Ayers CR, Turer CB, Grundy SM, Vega GL, Scherer PE (2011) Adipose tissue mass and location affect circulating adiponectin levels. Diabetologia 54:2515–2524PubMedCrossRefGoogle Scholar
  255. Uhl GR, Reppert SM (1986) Suprachiasmatic nucleus vasopressin messenger RNA: circadian variation in normal and Brattleboro rats. Science 232:390–393PubMedCrossRefGoogle Scholar
  256. Van den Berghe G, De Zegher F, Veldhuis JD, Wouters P, Gouwy S, Stockman W, Weekers F, Schetz M, Lauwers P, Bouillon R, Bowers CY (1997) Thyrotrophin and prolactin release in prolonged critical illness: dynamics of spontaneous secretion and effects of growth hormone-secretagogues. Clin Endocrinol 47:599–612CrossRefGoogle Scholar
  257. Van den Berghe G, De Zegher F, Baxter RC, Veldhuis JD, Wouters P, Schetz M, Verwaest C, Van Der Vorst E, Lauwers P, Bouillon R, Bowers CY (1998) Neuroendocrinology of prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone secretagogues. J Clin Endocrinol Metab 83:309–319PubMedCrossRefGoogle Scholar
  258. Van Den Pol AN (1991) Glutamate and aspartate immunoreactivity in hypothalamic presynaptic axons. J Neurosci 11:2087–2101PubMedGoogle Scholar
  259. Van Den Pol AN, Gorcs T (1986) Synaptic relationships between neurons containing vasopressin, gastrin-releasing peptide, vasoactive intestinal polypeptide, and glutamate decarboxylase immunoreactivity in the suprachiasmatic nucleus: dual ultrastructural immunocytochemistry with gold-substituted silver peroxidase. J Comp Neurol 252:507–521PubMedCrossRefGoogle Scholar
  260. Van den Top M, Nolan MF, Lee K, Richardson PJ, Buijs RM, Davies C, Spanswick D (2003) Orexins induce increased excitability and synchronisation of rat sympathetic preganglionic neurones. J Physiol 549:809–821PubMedCrossRefGoogle Scholar
  261. Van Der Beek EM (1996) Circadian control of reproduction in the female rat. In: Buijs RM, Kalsbeek A, Romijn HJ, Pennartz CMA, Mirmiran M (eds) Progress in brain research, vol 111, Hypothalamic integration of circadian rhythms. Elsevier Science BV, Amsterdam, pp 295–320Google Scholar
  262. Van Der Beek EM, Wiegant VM, Van Der Donk HA, Van Den Hurk R, Buijs RM (1993) Lesions of the suprachiasmatic nucleus indicate the presence of a direct vasoactive intestinal polypeptide-containing projection to gonadotrophin-releasing hormone neurons in the female rat. J Neuroendocrinol 5:137–144PubMedCrossRefGoogle Scholar
  263. Van Der Beek EM, Van Oudheusen HJC, Buijs RM, Van Der Donk HA, Van Den Hurk R, Wiegant VM (1994) Preferential induction of c-fos immunoreactivity in vasoactive intestinal polypeptide-innervated gonadotropin-releasing hormone neurons during a steroid-induced luteinizing hormone surge in the female rat. Endocrinology 134:2636–2644PubMedCrossRefGoogle Scholar
  264. Van Der Beek EM, Horvath TL, Wiegant VM, Van Den Hurk R, Buijs RM (1997) Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotropin-releasing hormone system: combined tracing and light and electron microscopic immunocytochemical studies. J Comp Neurol 384:569–579PubMedCrossRefGoogle Scholar
  265. Vandesande F, Dierickx K, De Mey J (1974) Identification of the vasopressin-neurophysin producing neurons of the rat suprachiasmatic nuclei. Cell Tissue Res 156:377–380Google Scholar
  266. Vida B, Deli L, Hrabovszky E et al (2010) Evidence for suprachiasmatic vasopressin neurones innervating kisspeptin neurones in the rostral periventricular area of the mouse brain: regulation by oestrogen. J Neuroendocrinol 22:1032–1039PubMedCrossRefGoogle Scholar
  267. Vrang N, Larsen PJ, Mikkelsen JD (1995) Direct projection from the suprachiasmatic nucleus to hypophysiotrophic corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus of the hypothalamus demonstrated by means of Phaseolus vulgaris-leucoagglutinin tract tracing. Brain Res 684:61–69PubMedCrossRefGoogle Scholar
  268. Vrang N, Mikkelsen JD, Larsen PJ (1997) Direct link from the suprachiasmatic nucleus to hypothalamic neurons projecting to the spinal cord: a combined tracing study using cholera toxin subunit B and Phaseolus vulgaris-leucoagglutinin. Brain Res Bull 44:671–680PubMedCrossRefGoogle Scholar
  269. Wang P, Mariman E, Renes J, Keijer J (2008) The secretory function of adipocytes in the physiology of white adipose tissue. J Cell Physiol 216:3–13PubMedCrossRefGoogle Scholar
  270. Watson RE, Langub MC, Engle MG, Maley BE (1995) Estrogen-receptive neurons in the anteroventral periventricular nucleus are synaptic targets of the suprachiasmatic nucleus and peri-suprachiasmatic region. Brain Res 689:254–264PubMedCrossRefGoogle Scholar
  271. Watts AG (2005) Glucocorticoid regulation of peptide genes in neuroendocrine CRH neurons: a complexity beyond negative feedback. Front Neuroendocrinol 26:109–130PubMedCrossRefGoogle Scholar
  272. Watts AG, Swanson LW (1987) Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J Comp Neurol 258:230–252PubMedCrossRefGoogle Scholar
  273. Weaver DR (1998) The suprachiasmatic nucleus: a 25-year retrospective. J Biol Rhythms 13: 100–112PubMedCrossRefGoogle Scholar
  274. Weiss B, Maickel RP (1968) Sympathetic nervous control of adipose tissue lipolysis. Int J Neuropharmacol 7:395–403PubMedCrossRefGoogle Scholar
  275. Williams WP 3rd, Jarjisian SG, Mikkelsen JD, Kriegsfeld LJ (2011) Circadian control of kisspeptin and a gated GnRH response mediate the preovulatory luteinizing hormone surge. Endocrinology 152:595–606PubMedCrossRefGoogle Scholar
  276. Wurtman RJ, Axelrod J, Sedvall G, Moore RY (1967) Photic and neural control of the 24-hour norepinephrine rhythm in the rat pineal gland. J Pharmacol Exp Ther 157:487–492PubMedGoogle Scholar
  277. Yang T, Chang C, Tsao C, Hsu Y, Hsu C, Cheng J (2009) Activation of muscarinic M-3 receptor may decrease glucose uptake and lipolysis in adipose tissue of rats. Neurosci Lett 451:57–59PubMedCrossRefGoogle Scholar
  278. Yanovski J, Witcher J, Adler NT, Markey SP, Klein DC (1987) Stimulation of the paraventricular nucleus area of the hypothalamus elevates urinary 6-hydroxymelatonin during daytime. Brain Res Bull 19:129–133PubMedCrossRefGoogle Scholar
  279. Yi CX, Serlie MJ, Ackermans MT, Foppen E, Buijs RM, Sauerwein HP, Fliers E, Kalsbeek A (2009) A major role for perifornical orexin neurons in the control of glucose metabolism in rats. Diabetes 58:1998–2005PubMedCrossRefGoogle Scholar
  280. Yuwiler A (1983) Vasoactive intestinal peptide stimulation of pineal serotonin-N-acetyltransferase activity: general characteristics. J Neurochem 41:146–153PubMedCrossRefGoogle Scholar
  281. Zeitzer JM, Ayas NT, Shea SA, Brown R, Czeisler CA (2000) Absence of detectable melatonin and preservation of cortisol and thyrotropin rhythms in tetraplegia. J Clin Endocrinol Metab 85:2189–2196PubMedCrossRefGoogle Scholar
  282. Zeitzer JM, Buckmaster CL, Parker KJ, Hauck CM, Lyons DM, Mignot E (2003) Circadian and homeostatic regulation of hypocretin in a primate model: implications for the consolidation of wakefulness. J Neurosci 23:3555–3560PubMedGoogle Scholar
  283. Zhang S, Zeitzer JM, Yoshida Y, Wisor JP, Nishino S, Edgar DM, Mignot E (2004) Lesions of the suprachiasmatic nucleus eliminate the daily rhythm of hypocretin-1 release. Sleep 27:619–627PubMedGoogle Scholar
  284. Zhang W, Zhang N, Sakurai T, Kuwaki T (2009) Orexin neurons in the hypothalamus mediate cardiorespiratory responses induced by disinhibition of the amygdala and bed nucleus of the stria terminalis. Brain Res 1262:25–37PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Endocrinology and MetabolismG2-133, Academic Medical Center (AMC) of the University of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Hypothalamic Integration MechanismsNetherlands Institute for Neuroscience, an institute of the Royal Dutch Academy of Arts and SciencesAmsterdamThe Netherlands
  3. 3.Department of Endocrinology and MetabolismF5-171, Academic Medical Center (AMC) of the University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations