Advertisement

The Circadian Control of Sleep

  • Simon P. Fisher
  • Russell G. FosterEmail author
  • Stuart N. PeirsonEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 217)

Abstract

The sleep/wake cycle is arguably the most familiar output of the circadian system, however, sleep is a complex biological process that arises from multiple brain regions and neurotransmitters, which is regulated by numerous physiological and environmental factors. These include a circadian drive for wakefulness as well as an increase in the requirement for sleep with prolonged waking (the sleep homeostat). In this chapter, we describe the regulation of sleep, with a particular emphasis on the contribution of the circadian system. Since their identification, the role of clock genes in the regulation of sleep has attracted considerable interest, and here, we provide an overview of the interplay between specific elements of the molecular clock with the sleep regulatory system. Finally, we summarise the role of the light environment, melatonin and social cues in the modulation of sleep, with a focus on the role of melanopsin ganglion cells.

Keywords

Sleep Circadian Clock gene Melatonin Melanopsin 

Notes

Acknowledgements

The authors would like to thank Laurence Brown for preparation of Fig. 3. The authors work is funded by a Wellcome Trust Programme Grant (awarded to RGF) and a BBSRC project grant (awarded to SNP). SPF was supported by a Knoop Junior Research Fellowship (St Cross, Oxford).

References

  1. Abe M, Herzog ED, Yamazaki S, Straume M, Tei H et al (2002) Circadian rhythms in isolated brain regions. J Neurosci 22:350–356PubMedGoogle Scholar
  2. Abou-Ismail UA, Burman OH, Nicol CJ, Mendl M (2010) The effects of enhancing cage complexity on the behaviour and welfare of laboratory rats. Behav Process 85:172–180CrossRefGoogle Scholar
  3. Akanmu MA, Songkram C, Kagechika H, Honda K (2004) A novel melatonin derivative modulates sleep/wake cycle in rats. Neurosci Lett 364:199–202PubMedCrossRefGoogle Scholar
  4. Altimus CM, Guler AD, Villa KL, McNeill DS, Legates TA, Hattar S (2008) Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation. Proc Natl Acad Sci USA 105:19998–20003PubMedCrossRefGoogle Scholar
  5. Altimus CM, Guler AD, Alam NM, Arman AC, Prusky GT et al (2010) Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat Neurosci 13:1107–1112PubMedCrossRefGoogle Scholar
  6. Archer SN, Carpen JD, Gibson M, Lim GH, Johnston JD et al (2010) Polymorphism in the PER3 promoter associates with diurnal preference and delayed sleep phase disorder. Sleep 33:695–701PubMedGoogle Scholar
  7. Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, Weaver DR (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30:525–536PubMedCrossRefGoogle Scholar
  8. Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep/wake regulation. Prog Neurobiol 73:379–396PubMedCrossRefGoogle Scholar
  9. Benca RM, Gilliland MA, Obermeyer WH (1998) Effects of lighting conditions on sleep and wakefulness in albino Lewis and pigmented Brown Norway rats. Sleep 21:451–460PubMedGoogle Scholar
  10. Borbely AA (1978) Effects of light on sleep and activity rhythms. Prog Neurobiol 10:1–31PubMedCrossRefGoogle Scholar
  11. Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204PubMedGoogle Scholar
  12. Borbely AA, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhythms 14:557–568PubMedGoogle Scholar
  13. Borbely AA, Baumann F, Brandeis D, Strauch I, Lehmann D (1981) Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol 51:483–495PubMedCrossRefGoogle Scholar
  14. Brown TM, Colwell CS, Waschek JA, Piggins HD (2007) Disrupted neuronal activity rhythms in the suprachiasmatic nuclei of vasoactive intestinal polypeptide-deficient mice. J Neurophysiol 97:2553–2558PubMedCrossRefGoogle Scholar
  15. Brzezinski A, Vangel MG, Wurtman RJ, Norrie G, Zhdanova I et al (2005) Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev 9:41–50PubMedCrossRefGoogle Scholar
  16. Buhr ED, Takahashi JS (2013) Molecular components of the mammalian circadian clock. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, HeidelbergGoogle Scholar
  17. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA et al (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017PubMedCrossRefGoogle Scholar
  18. Buscemi N, Vandermeer B, Hooton N, Pandya R, Tjosvold L et al (2006) Efficacy and safety of exogenous melatonin for secondary sleep disorders and sleep disorders accompanying sleep restriction: meta-analysis. BMJ 332:385–393PubMedCrossRefGoogle Scholar
  19. Cassone VM (1990) Effects of melatonin on vertebrate circadian systems. Trends Neurosci 13:457–464PubMedCrossRefGoogle Scholar
  20. Cirelli C, Gutierrez CM, Tononi G (2004) Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41:35–43PubMedCrossRefGoogle Scholar
  21. Czeisler CA, Zimmerman JC, Ronda JM, Moore-Ede MC, Weitzman ED (1980) Timing of REM sleep is coupled to the circadian rhythm of body temperature in man. Sleep 2:329–346PubMedGoogle Scholar
  22. Deboer T, Vansteensel MJ, Detari L, Meijer JH (2003) Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 6:1086–1090PubMedCrossRefGoogle Scholar
  23. Deboer T, Detari L, Meijer JH (2007) Long term effects of sleep deprivation on the mammalian circadian pacemaker. Sleep 30:257–262PubMedGoogle Scholar
  24. Debruyne JP, Noton E, Lambert CM, Maywood ES, Weaver DR, Reppert SM (2006) A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron 50:465–477PubMedCrossRefGoogle Scholar
  25. DeBruyne JP, Weaver DR, Reppert SM (2007) CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 10:543–545PubMedCrossRefGoogle Scholar
  26. Deurveilher S, Semba K (2005) Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience 130:165–183PubMedCrossRefGoogle Scholar
  27. Dijk DJ, Czeisler CA (1994) Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci Lett 166:63–68PubMedCrossRefGoogle Scholar
  28. Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15:3526–3538PubMedGoogle Scholar
  29. Dijk DJ, Duffy JF (1999) Circadian regulation of human sleep and age-related changes in its timing, consolidation and EEG characteristics. Ann Med 31:130–140PubMedCrossRefGoogle Scholar
  30. Dijk DJ, Lockley SW (2002) Integration of human sleep/wake regulation and circadian rhythmicity. J Appl Physiol 92:852–862PubMedGoogle Scholar
  31. Dudley CA, Erbel-Sieler C, Estill SJ, Reick M, Franken P et al (2003) Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301:379–383PubMedCrossRefGoogle Scholar
  32. Eastman CI, Mistlberger RE, Rechtschaffen A (1984) Suprachiasmatic nuclei lesions eliminate circadian temperature and sleep rhythms in the rat. Physiol Behav 32:357–368PubMedCrossRefGoogle Scholar
  33. Easton A, Meerlo P, Bergmann B, Turek FW (2004) The suprachiasmatic nucleus regulates sleep timing and amount in mice. Sleep 27:1307–1318PubMedGoogle Scholar
  34. Edgar DM, Dement WC, Fuller CA (1993) Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep/wake regulation. J Neurosci 13:1065–1079PubMedGoogle Scholar
  35. Finelli LA, Baumann H, Borbely AA, Achermann P (2000) Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience 101:523–529PubMedCrossRefGoogle Scholar
  36. Fisher SP, Sugden D (2009) Sleep-promoting action of IIK7, a selective MT2 melatonin receptor agonist in the rat. Neurosci Lett 457:93–96PubMedCrossRefGoogle Scholar
  37. Fisher SP, Sugden D (2010) Endogenous melatonin is not obligatory for the regulation of the rat sleep/wake cycle. Sleep 33:833–840PubMedGoogle Scholar
  38. Fisher SP, Davidson K, Kulla A, Sugden D (2008) Acute sleep-promoting action of the melatonin agonist, ramelteon, in the rat. J Pineal Res 45:125–132PubMedCrossRefGoogle Scholar
  39. Franken P, Malafosse A, Tafti M (1999) Genetic determinants of sleep regulation in inbred mice. Sleep 22:155–169PubMedGoogle Scholar
  40. Franken P, Lopez-Molina L, Marcacci L, Schibler U, Tafti M (2000) The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity. J Neurosci 20:617–625PubMedGoogle Scholar
  41. Franken P, Dudley CA, Estill SJ, Barakat M, Thomason R et al (2006) NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: genotype and sex interactions. Proc Natl Acad Sci USA 103:7118–7123PubMedCrossRefGoogle Scholar
  42. Franken P, Thomason R, Heller HC, O’Hara BF (2007) A non-circadian role for clock-genes in sleep homeostasis: a strain comparison. BMC Neurosci 8:87PubMedCrossRefGoogle Scholar
  43. Garcia JA, Zhang D, Estill SJ, Michnoff C, Rutter J et al (2000) Impaired cued and contextual memory in NPAS2-deficient mice. Science 288:2226–2230PubMedCrossRefGoogle Scholar
  44. Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD et al (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569PubMedCrossRefGoogle Scholar
  45. Gerashchenko D, Wisor JP, Burns D, Reh RK, Shiromani PJ et al (2008) Identification of a population of sleep-active cerebral cortex neurons. Proc Natl Acad Sci USA 105:10227–10232PubMedCrossRefGoogle Scholar
  46. Gong H, McGinty D, Guzman-Marin R, Chew KT, Stewart D, Szymusiak R (2004) Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. J Physiol 556:935–946PubMedCrossRefGoogle Scholar
  47. Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM et al (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453:102–105PubMedCrossRefGoogle Scholar
  48. Hankins MW, Peirson SN, Foster RG (2008) Melanopsin: an exciting photopigment. Trends Neurosci 31:27–36PubMedCrossRefGoogle Scholar
  49. Hasan S, van der Veen DR, Winsky-Sommerer R, Dijk DJ, Archer SN (2011) Altered sleep and behavioral activity phenotypes in PER3-deficient mice. Am J Physiol Regul Integr Comp Physiol 301(6):R1821–30PubMedCrossRefGoogle Scholar
  50. He Y, Jones CR, Fujiki N, Xu Y, Guo B et al (2009) The transcriptional repressor DEC2 regulates sleep length in mammals. Science 325:866–870PubMedCrossRefGoogle Scholar
  51. Holmes SW, Sugden D (1982) Effects of melatonin on sleep and neurochemistry in the rat. Br J Pharmacol 76:95–101PubMedCrossRefGoogle Scholar
  52. Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F et al (2002) Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419:841–844PubMedCrossRefGoogle Scholar
  53. Hu WP, Li JD, Zhang C, Boehmer L, Siegel JM, Zhou QY (2007) Altered circadian and homeostatic sleep regulation in prokineticin 2-deficient mice. Sleep 30:247–256PubMedGoogle Scholar
  54. Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA et al (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8:858–859PubMedCrossRefGoogle Scholar
  55. Huang ZL, Urade Y, Hayaishi O (2007) Prostaglandins and adenosine in the regulation of sleep and wakefulness. Curr Opin Pharmacol 7:33–38PubMedCrossRefGoogle Scholar
  56. Huber R, Deboer T, Schwierin B, Tobler I (1998) Effect of melatonin on sleep and brain temperature in the Djungarian hamster and the rat. Physiol Behav 65:77–82PubMedCrossRefGoogle Scholar
  57. Huber R, Ghilardi MF, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430:78–81PubMedCrossRefGoogle Scholar
  58. Huber R, Ghilardi MF, Massimini M, Ferrarelli F, Riedner BA et al (2006) Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci 9:1169–1176PubMedCrossRefGoogle Scholar
  59. Kalinchuk AV, McCarley RW, Porkka-Heiskanen T, Basheer R (2011) The time course of adenosine, nitric oxide (NO) and inducible NO synthase changes in the brain with sleep loss and their role in the non-rapid eye movement sleep homeostatic cascade. J Neurochem 116:260–272PubMedCrossRefGoogle Scholar
  60. Kaushal N, Nair D, Gozal D, Ramesh V (2012) Socially isolated mice exhibit a blunted homeostatic sleep response to acute sleep deprivation compared to socially paired mice. Brain Res 1454:65–79. doi:  10.1016/j.brainres.2012.03.019 PubMedCrossRefGoogle Scholar
  61. King VM, Chahad-Ehlers S, Shen S, Harmar AJ, Maywood ES, Hastings MH (2003) A hVIPR transgene as a novel tool for the analysis of circadian function in the mouse suprachiasmatic nucleus. Eur J Neurosci 17(11):822–832CrossRefGoogle Scholar
  62. Kopp C, Albrecht U, Zheng B, Tobler I (2002) Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. Eur J Neurosci 16:1099–1106PubMedCrossRefGoogle Scholar
  63. Korf HW, Schomerus C, Stehle JH (1998) The pineal organ, its hormone melatonin, and the photoneuroendocrine system. Adv Anat Embryol Cell Biol 146:1–100PubMedCrossRefGoogle Scholar
  64. Lall GS, Revell VL, Momiji H, Al Enezi J, Altimus CM et al (2010) Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance. Neuron 66:417–428PubMedCrossRefGoogle Scholar
  65. Lancel M, van Riezen H, Glatt A (1991) Effects of circadian phase and duration of sleep deprivation on sleep and EEG power spectra in the cat. Brain Res 548:206–214PubMedCrossRefGoogle Scholar
  66. Landgraf D, Shostak A, Oster H (2012) Clock genes and sleep. Pflugers Arch 463(1):3–14PubMedCrossRefGoogle Scholar
  67. Landolt HP, Rétey JV, Tönz K, Gottselig JM, Khatami R, Buckelmüller I, Achermann P (2004) Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacology 29:1933–1939PubMedCrossRefGoogle Scholar
  68. Langebartels A, Mathias S, Lancel M (2001) Acute effects of melatonin on spontaneous and picrotoxin-evoked sleep/wake behaviour in the rat. J Sleep Res 10:211–217PubMedCrossRefGoogle Scholar
  69. Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F (2005) Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep 28:395–409PubMedGoogle Scholar
  70. Larkin JE, Yokogawa T, Heller HC, Franken P, Ruby NF (2004) Homeostatic regulation of sleep in arrhythmic Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 287:R104–R111PubMedCrossRefGoogle Scholar
  71. Le Bon O, Staner L, Hoffmann G, Dramaix M, San Sebastian I et al (2001) The first-night effect may last more than one night. J Psychiatr Res 35:165–172PubMedCrossRefGoogle Scholar
  72. Li JD, Hu WP, Boehmer L, Cheng MY, Lee AG et al (2006) Attenuated circadian rhythms in mice lacking the prokineticin 2 gene. J Neurosci 26:11615–11623PubMedCrossRefGoogle Scholar
  73. Liu J, Wang LN (2012) Ramelteon in the treatment of chronic insomnia: systematic review and meta-analysis. Int J Clin Pract 66:867–873PubMedCrossRefGoogle Scholar
  74. Lopez-Molina L, Conquet F, Dubois-Dauphin M, Schibler U (1997) The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO J 16:6762–6771PubMedCrossRefGoogle Scholar
  75. Lupi D, Oster H, Thompson S, Foster RG (2008) The acute light-induction of sleep is mediated by OPN4-based photoreception. Nat Neurosci 11:1068–1073PubMedCrossRefGoogle Scholar
  76. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H et al (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631PubMedCrossRefGoogle Scholar
  77. Maret S, Dorsaz S, Gurcel L, Pradervand S, Petit B et al (2007) Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci USA 104:20090–20095PubMedCrossRefGoogle Scholar
  78. Meerlo P, Turek FW (2001) Effects of social stimuli on sleep in mice: non-rapid-eye-movement (NREM) sleep is promoted by aggressive interaction but not by sexual interaction. Brain Res 907:84–92PubMedCrossRefGoogle Scholar
  79. Meerlo P, Pragt BJ, Daan S (1997) Social stress induces high intensity sleep in rats. Neurosci Lett 225:41–44PubMedCrossRefGoogle Scholar
  80. Meerlo P, de Bruin EA, Strijkstra AM, Daan S (2001) A social conflict increases EEG slow-wave activity during subsequent sleep. Physiol Behav 73:331–335PubMedCrossRefGoogle Scholar
  81. Mendelson WB, Bergmann BM (2001) Effects of pinealectomy on baseline sleep and response to sleep deprivation. Sleep 24:369–373PubMedGoogle Scholar
  82. Michaud JC, Muyard JP, Capdevielle G, Ferran E, Giordano-Orsini JP et al (1982) Mild insomnia induced by environmental perturbations in the rat: a study of this new model and of its possible applications in pharmacological research. Arch Int Pharmacodyn Ther 259:93–105PubMedGoogle Scholar
  83. Mirmiran M, Pevet P (1986) Effects of melatonin and 5-methoxytryptamine on sleep/wake patterns in the male rat. J Pineal Res 3:135–141PubMedCrossRefGoogle Scholar
  84. Mirmiran M, van den Dungen H, Uylings HB (1982) Sleep patterns during rearing under different environmental conditions in juvenile rats. Brain Res 233:287–298PubMedCrossRefGoogle Scholar
  85. Mistlberger RE, Bergmann BM, Waldenar W, Rechtschaffen A (1983) Recovery sleep following sleep deprivation in intact and suprachiasmatic nuclei-lesioned rats. Sleep 6:217–233PubMedGoogle Scholar
  86. Mistlberger RE, Bergmann BM, Rechtschaffen A (1987) Relationships among wake episode lengths, contiguous sleep episode lengths, and electroencephalographic delta waves in rats with suprachiasmatic nuclei lesions. Sleep 10:12–24PubMedGoogle Scholar
  87. Miyamoto M (2006) Effect of ramelteon (TAK-375), a selective MT1/MT2 receptor agonist, on motor performance in mice. Neurosci Lett 402:201–204PubMedCrossRefGoogle Scholar
  88. Miyamoto M, Nishikawa H, Doken Y, Hirai K, Uchikawa O, Ohkawa S (2004) The sleep-promoting action of ramelteon (TAK-375) in freely moving cats. Sleep 27:1319–1325PubMedGoogle Scholar
  89. Mongrain V, La Spada F, Curie T, Franken P (2011) Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex. PLoS One 6:e26622PubMedCrossRefGoogle Scholar
  90. Moore RY (1983) Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus. Fed Proc 42(11):2783–2789PubMedGoogle Scholar
  91. Mouret J, Coindet J, Debilly G, Chouvet G (1978) Suprachiasmatic nuclei lesions in the rat: alterations in sleep circadian rhythms. Electroencephalogr Clin Neurophysiol 45:402–408PubMedCrossRefGoogle Scholar
  92. Mrosovsky N (2001) Further characterization of the phenotype of mCry1/mCry2-deficient mice. Chronobiol Int 18:613–625PubMedCrossRefGoogle Scholar
  93. Mrosovsky N, Edelstein K, Hastings MH, Maywood ES (2001) Cycle of period gene expression in a diurnal mammal (Spermophilus tridecemlineatus): implications for nonphotic phase shifting. J Biol Rhythms 16:471–478PubMedCrossRefGoogle Scholar
  94. Murphy M, Huber R, Esser S, Riedner BA, Massimini M et al (2011) The cortical topography of local sleep. Curr Top Med Chem 11(19):2438–46PubMedCrossRefGoogle Scholar
  95. Naylor E, Bergmann BM, Krauski K, Zee PC, Takahashi JS et al (2000) The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci 20:8138–8143PubMedGoogle Scholar
  96. O’Neill JS, Maywood ES, Hastings MH (2013) Cellular mechanisms of circadian pacemaking: beyond transcriptional loops. In: Kramer A, Merrow M (eds) Circadian clocks, Handbook of experimental pharmacology 217. Springer, HeidelbergGoogle Scholar
  97. Ochoa-Sanchez R, Comai S, Lacoste B, Bambico FR, Dominguez-Lopez S et al (2011) Promotion of non-rapid eye movement sleep and activation of reticular thalamic neurons by a novel MT2 melatonin receptor ligand. J Neurosci 31:18439–18452PubMedCrossRefGoogle Scholar
  98. Okamura H, Miyake S, Sumi Y, Yamaguchi S, Yasui A et al (1999) Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock. Science 286:2531–2534PubMedCrossRefGoogle Scholar
  99. Oliver PL, Sobczyk MV, Maywood ES, Edwards B, Lee S et al (2012) Disrupted circadian rhythms in a mouse model of schizophrenia. Curr Biol 22:314–319PubMedCrossRefGoogle Scholar
  100. Pandi-Perumal SR, Srinivasan V, Maestroni GJ, Cardinali DP, Poeggeler B, Hardeland R (2006) Melatonin: nature’s most versatile biological signal? FEBS J 273:2813–2838PubMedCrossRefGoogle Scholar
  101. Pasumarthi RK, Gerashchenko D, Kilduff TS (2010) Further characterization of sleep-active neuronal nitric oxide synthase neurons in the mouse brain. Neuroscience 169:149–157PubMedCrossRefGoogle Scholar
  102. Peirson SN, Foster RG (2011) Bad light stops play. EMBO Rep 12:380PubMedCrossRefGoogle Scholar
  103. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–1268PubMedCrossRefGoogle Scholar
  104. Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99:507–517PubMedCrossRefGoogle Scholar
  105. Portas CM, Thakkar M, Rainnie DG, Greene RW, McCarley RW (1997) Role of adenosine in behavioral state modulation: a microdialysis study in the freely moving cat. Neuroscience 79:225–235PubMedCrossRefGoogle Scholar
  106. Pritchett D, Wulff K, Oliver PL, Bannerman DM, Davies KE et al (2012) Evaluating the links between schizophrenia and sleep and circadian rhythm disruption. J Neural Transm 119(10):1061–75PubMedCrossRefGoogle Scholar
  107. Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247(4945):975–978PubMedCrossRefGoogle Scholar
  108. Reick M, Garcia JA, Dudley C, McKnight SL (2001) NPAS2: an analog of clock operative in the mammalian forebrain. Science 293:506–509PubMedCrossRefGoogle Scholar
  109. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941PubMedCrossRefGoogle Scholar
  110. Ripperger JA, Shearman LP, Reppert SM, Schibler U (2000) CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev 14:679–689PubMedGoogle Scholar
  111. Rosenwasser AM (2010) Circadian clock genes: non-circadian roles in sleep, addiction, and psychiatric disorders? Neurosci Biobehav Rev 34:1249–1255PubMedCrossRefGoogle Scholar
  112. Rossner MJ, Oster H, Wichert SP, Reinecke L, Wehr MC et al (2008) Disturbed clockwork resetting in Sharp-1 and Sharp-2 single and double mutant mice. PLoS One 3:e2762PubMedCrossRefGoogle Scholar
  113. Roth T, Stubbs C, Walsh JK (2005) Ramelteon (TAK-375), a selective MT1/MT2-receptor agonist, reduces latency to persistent sleep in a model of transient insomnia related to a novel sleep environment. Sleep 28:303–307PubMedGoogle Scholar
  114. Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ et al (2007) Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA 104:6406–6411PubMedCrossRefGoogle Scholar
  115. Rusterholz T, Achermann P (2011) Topographical aspects in the dynamics of sleep homeostasis in young men: individual patterns. BMC Neurosci 12:84PubMedCrossRefGoogle Scholar
  116. Satoh S, Matsumura H, Suzuki F, Hayaishi O (1996) Promotion of sleep mediated by the A2a-adenosine receptor and possible involvement of this receptor in the sleep induced by prostaglandin D2 in rats. Proc Natl Acad Sci USA 93:5980–5984PubMedCrossRefGoogle Scholar
  117. Scammell TE, Gerashchenko DY, Mochizuki T, McCarthy MT, Estabrooke IV et al (2001) An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience 107:653–663PubMedCrossRefGoogle Scholar
  118. Shamir E, Rotenberg VS, Laudon M, Zisapel N, Elizur A (2000) First-night effect of melatonin treatment in patients with chronic schizophrenia. J Clin Psychopharmacol 20:691–694PubMedCrossRefGoogle Scholar
  119. Shearman LP, Jin X, Lee C, Reppert SM, Weaver DR (2000) Targeted disruption of the mPer3 gene: subtle effects on circadian clock function. Mol Cell Biol 20:6269–6275PubMedCrossRefGoogle Scholar
  120. Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271:216–219PubMedCrossRefGoogle Scholar
  121. Sheward WJ, Naylor E, Knowles-Barley S, Armstrong JD, Brooker GA et al (2010) Circadian control of mouse heart rate and blood pressure by the suprachiasmatic nuclei: behavioral effects are more significant than direct outputs. PLoS One 5:e9783PubMedCrossRefGoogle Scholar
  122. Shiromani PJ, Xu M, Winston EM, Shiromani SN, Gerashchenko D, Weaver DR (2004) Sleep rhythmicity and homeostasis in mice with targeted disruption of mPeriod genes. Am J Physiol Regul Integr Comp Physiol 287:R47–R57PubMedCrossRefGoogle Scholar
  123. Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69(6):1583–1586PubMedCrossRefGoogle Scholar
  124. Tang X, Xiao J, Parris BS, Fang J, Sanford LD (2005) Differential effects of two types of environmental novelty on activity and sleep in BALB/cJ and C57BL/6J mice. Physiol Behav 85:419–429PubMedCrossRefGoogle Scholar
  125. Tobler I (1995) Is sleep fundamentally different between mammalian species? Behav Brain Res 69:35–41PubMedCrossRefGoogle Scholar
  126. Tobler I, Borbely AA, Groos G (1983) The effect of sleep deprivation on sleep in rats with suprachiasmatic lesions. Neurosci Lett 42:49–54PubMedCrossRefGoogle Scholar
  127. Tobler I, Jaggi K, Borbely AA (1994) Effects of melatonin and the melatonin receptor agonist S-20098 on the vigilance states, EEG spectra, and cortical temperature in the rat. J Pineal Res 16:26–32PubMedCrossRefGoogle Scholar
  128. Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10:49–62PubMedCrossRefGoogle Scholar
  129. Tsai JW, Hannibal J, Hagiwara G, Colas D, Ruppert E et al (2009) Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(−/−) mice. PLoS Biol 7:e1000125PubMedCrossRefGoogle Scholar
  130. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045PubMedCrossRefGoogle Scholar
  131. van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S et al (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398:627–630PubMedCrossRefGoogle Scholar
  132. van der Veen DR, Archer SN (2010) Light-dependent behavioral phenotypes in PER3-deficient mice. J Biol Rhythms 25:3–8PubMedCrossRefGoogle Scholar
  133. Viola AU, Archer SN, James LM, Groeger JA, Lo JC et al (2007) PER3 polymorphism predicts sleep structure and waking performance. Curr Biol 17:613–618PubMedCrossRefGoogle Scholar
  134. Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL et al (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725PubMedCrossRefGoogle Scholar
  135. Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C et al (1999) Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci USA 96:12114–12119PubMedCrossRefGoogle Scholar
  136. Vyazovskiy VV, Tobler I (2005) Theta activity in the waking EEG is a marker of sleep propensity in the rat. Brain Res 1050:64–71PubMedCrossRefGoogle Scholar
  137. Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G (2011) Local sleep in awake rats. Nature 472:443–447PubMedCrossRefGoogle Scholar
  138. Wang F, Li JC, Wu CF, Yang JY, Zhang RM, Chai HF (2003) Influences of a light/dark profile and the pineal gland on the hypnotic activity of melatonin in mice and rats. J Pharm Pharmacol 55:1307–1312PubMedCrossRefGoogle Scholar
  139. Weaver DR (1998) The suprachiasmatic nucleus: a 25-year retrospective. J Biol Rhythms 13:100–112PubMedCrossRefGoogle Scholar
  140. Wisor JP, O’Hara BF, Terao A, Selby CP, Kilduff TS et al (2002) A role for cryptochromes in sleep regulation. BMC Neurosci 3:20PubMedCrossRefGoogle Scholar
  141. Wisor JP, Pasumarthi RK, Gerashchenko D, Thompson CL, Pathak S et al (2008) Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains. J Neurosci 28:7193–7201PubMedCrossRefGoogle Scholar
  142. Wulff K, Porcheret K, Cussans E, Foster RG (2009) Sleep and circadian rhythm disturbances: multiple genes and multiple phenotypes. Curr Opin Genet Dev 19:237–246PubMedCrossRefGoogle Scholar
  143. Wulff K, Gatti S, Wettstein JG, Foster RG (2010) Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 11:589–599PubMedCrossRefGoogle Scholar
  144. Yamanaka Y, Suzuki Y, Todo T, Honma K, Honma S (2010) Loss of circadian rhythm and light-induced suppression of pineal melatonin levels in Cry1 and Cry2 double-deficient mice. Genes Cells 15:1063–1071PubMedCrossRefGoogle Scholar
  145. Yerkes RM, Dodson JD (1908) The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol 18:459–482CrossRefGoogle Scholar
  146. Yukuhiro N, Kimura H, Nishikawa H, Ohkawa S, Yoshikubo S, Miyamoto M (2004) Effects of ramelteon (TAK-375) on nocturnal sleep in freely moving monkeys. Brain Res 1027:59–66PubMedCrossRefGoogle Scholar
  147. Zavada A, Strijkstra AM, Boerema AS, Daan S, Beersma DG (2009) Evidence for differential human slow-wave activity regulation across the brain. J Sleep Res 18:3–10PubMedCrossRefGoogle Scholar
  148. Zhdanova IV (2005) Melatonin as a hypnotic: pro. Sleep Med Rev 9:51–65PubMedCrossRefGoogle Scholar
  149. Zlotos DP (2012) Recent progress in the development of agonists and antagonists for melatonin receptors. Curr Med Chem 19:3532–3549PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Biosciences DivisionSRI International, Centre for NeuroscienceMenlo ParkUSA
  2. 2.Nuffield Laboratory of OphthalmologyJohn Radcliffe HospitalOxfordUK

Personalised recommendations