Skip to main content

The Clock in the Brain: Neurons, Glia, and Networks in Daily Rhythms

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 217))

Abstract

The master coordinator of daily schedules in mammals, located in the ventral hypothalamus, is the suprachiasmatic nucleus (SCN). This relatively small population of neurons and glia generates circadian rhythms in physiology and behavior and synchronizes them to local time. Recent advances have begun to define the roles of specific cells and signals (e.g., peptides, amino acids, and purine derivatives) within this network that generate and synchronize daily rhythms. Here we focus on the best-studied signals between neurons and between glia in the mammalian circadian system with an emphasis on time-of-day pharmacology. Where possible, we highlight how commonly used drugs affect the circadian system.

All authors contributed equally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham U, Granada AE, Westermark PO, Heine M, Kramer A, Herzel H (2010) Coupling governs entrainment range of circadian clocks. Mol Syst Biol 6:438

    Article  PubMed  Google Scholar 

  • Abrahamson EE, Moore RY (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916:172–191

    Article  PubMed  CAS  Google Scholar 

  • Aida R, Moriya T, Araki M, Akiyama M, Wada K, Wada E, Shibata S (2002) Gastrin-releasing peptide mediates photic entrainable signals to dorsal subsets of suprachiasmatic nucleus via induction of Period gene in mice. Mol Pharmacol 61:26–34

    Article  PubMed  CAS  Google Scholar 

  • Albus H, Vansteensel MJ, Michel S, Block GD, Meijer JH (2005) A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr Biol 15:886–893

    Article  PubMed  CAS  Google Scholar 

  • An S, Irwin RP, Allen CN, Tsai CA, Herzog ED (2011) Vasoactive intestinal polypeptide requires parallel changes in adenylate cyclase and phospholipase C to entrain circadian rhythms to a predictable phase. J Neurophysiol 105:2289–2296

    Article  PubMed  CAS  Google Scholar 

  • Antle MC, Foley DK, Foley NC, Silver R (2003) Gates and oscillators: a network model of the brain clock. J Biol Rhythms 18:339–350

    Article  PubMed  Google Scholar 

  • Antle MC, Kriegsfeld LJ, Silver R (2005) Signaling within the master clock of the brain: localized activation of mitogen-activated protein kinase by gastrin-releasing peptide. J Neurosci 25:2447–2454

    Article  PubMed  CAS  Google Scholar 

  • Antle MC, Foley NC, Foley DK, Silver R (2007) Gates and oscillators II: zeitgebers and the network model of the brain clock. J Biol Rhythms 22:14–25

    Article  PubMed  Google Scholar 

  • Atkins N, Mitchell JW, Romanova EV, Morgan DJ, Cominski TP, Ecker JL, Pintar JE, Sweedler JV, Gillette MU (2010) Circadian integration of glutamatergic signals by little SAAS in novel suprachiasmatic circuits. PLoS One 5:e12612

    Article  PubMed  CAS  Google Scholar 

  • Aton SJ, Huettner JE, Straume M, Herzog ED (2006) GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons. Proc Natl Acad Sci USA 103:19188–19193

    Article  PubMed  CAS  Google Scholar 

  • Beaulé C, Swanstrom A, Leone MJ, Herzog ED (2009) Circadian modulation of gene expression, but not glutamate uptake, in mouse and rat cortical astrocytes. PLoS One 4:e7476

    Article  PubMed  CAS  Google Scholar 

  • Belenky MA, Smeraski CA, Provencio I, Sollars PJ, Pickard GE (2003) Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol 460:380–393

    Article  PubMed  Google Scholar 

  • Belenky MA, Yarom Y, Pickard GE (2007) Heterogeneous expression of gamma-aminobutyric acid and gamma-aminobutyric acid-associated receptors and transporters in the rat suprachiasmatic nucleus. J Comp Neurol 506:708–732

    Article  CAS  Google Scholar 

  • Bennett MR, Schwartz WJ (1994) Astrocytes in circadian rhythm generation and regulation. Neuroreport 5:1697

    Article  Google Scholar 

  • Brown TM, Hughes AT, Piggins HD (2005) Gastrin-releasing peptide promotes suprachiasmatic nuclei cellular rhythmicity in the absence of vasoactive intestinal polypeptide-VPAC2 receptor signaling. J Neurosci 25:11155–11164

    Article  PubMed  CAS  Google Scholar 

  • Brown TM, McLachlan E, Piggins HD (2008) Angiotensin II regulates the activity of mouse suprachiasmatic nuclei neurons. Neuroscience 154:839–847

    Article  PubMed  CAS  Google Scholar 

  • Bryant DN, LeSauter J, Silver R, Romero MT (2000) Retinal innervation of calbindin-D28K cells in the hamster suprachiasmatic nucleus: ultrastructural characterization. J Biol Rhythms 15:103–111

    Article  PubMed  CAS  Google Scholar 

  • Burkeen JF, Womac AD, Earnest DJ, Zoran MJ (2011) Mitochondrial calcium signaling mediates rhythmic extracellular ATP accumulation in suprachiasmatic nucleus astrocytes. J Neurosci 31:8432–8440

    Article  PubMed  CAS  Google Scholar 

  • Burlet A, Marchetti J (1975) Immunoreactive vasopressin in the supra-chiasmatic nucleus. Preliminary data in rats. C R Seances Soc Biol Fil 169:148–151

    PubMed  CAS  Google Scholar 

  • Cambras T, Weller JR, Anglès-Pujoràs M, Lee ML, Christopher A, Díez-Noguera A, Krueger JM, de la Iglesia HO (2007) Circadian desynchronization of core body temperature and sleep stages in the rat. Proc Natl Acad Sci USA 104:7634–7639

    Article  PubMed  CAS  Google Scholar 

  • Cashion AB, Smith MJ, Wise PM (2003) The morphometry of astrocytes in the rostral preoptic area exhibits a diurnal rhythm on proestrus: relationship to the luteinizing hormone surge and effects of age. Endocrinology 144:274–280

    Article  PubMed  CAS  Google Scholar 

  • Chikahisa S, Séi H (2011) The role of ATP in sleep regulation. Front Neurol 2:87

    Article  PubMed  CAS  Google Scholar 

  • Choi HJ, Lee CJ, Schroeder A, Kim YS, Jung SH, Kim JS, Kim DY, Son EJ, Han HC, Hong SK et al (2008) Excitatory actions of GABA in the suprachiasmatic nucleus. J Neurosci 28:5450–5459

    Article  PubMed  CAS  Google Scholar 

  • de la Iglesia HO, Cambras T, Schwartz WJ, Díez-Noguera A (2004) Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Curr Biol 14:796–800

    Article  PubMed  CAS  Google Scholar 

  • Dickinson PS (2006) Neuromodulation of central pattern generators in invertebrates and vertebrates. Curr Opin Neurobiol 16:604–614

    Article  PubMed  CAS  Google Scholar 

  • Ding JM, Buchanan GF, Tischkau SA, Chen D, Kuriashkina L, Faiman LE, Alster JM, McPherson PS, Campbell KP, Gillette MU (1998) A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. Nature 394:381–384

    Article  PubMed  CAS  Google Scholar 

  • Drouyer E, LeSauter J, Hernandez AL, Silver R (2010) Specializations of gastrin-releasing peptide cells of the mouse suprachiasmatic nucleus. J Comp Neurol 518:1249–1263

    PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    Article  PubMed  CAS  Google Scholar 

  • Earnest DJ, Sladek CD (1986) Circadian rhythms of vasopressin release from individual rat suprachiasmatic explants in vitro. Brain Res 382:129–133

    Article  PubMed  CAS  Google Scholar 

  • Ehlen JC, Novak CM, Karom MC, Gamble KL, Albers HE (2008) Interactions of GABAA receptor activation and light on period mRNA expression in the suprachiasmatic nucleus. J Biol Rhythms 23:16–25

    Article  PubMed  CAS  Google Scholar 

  • Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436

    Article  PubMed  CAS  Google Scholar 

  • Francl JM, Kaur G, Glass JD (2010) Regulation of vasoactive intestinal polypeptide release in the suprachiasmatic nucleus circadian clock. Neuroreport 21:1055–1059

    Article  PubMed  CAS  Google Scholar 

  • Francois-Bellan AM, Segu L, Hery M (1989) Regulation by estradiol of GABAA and GABAB binding sites in the diencephalon of the rat: an autoradiographic study. Brain Res 503:144–147

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    PubMed  CAS  Google Scholar 

  • Fricker LD, McKinzie AA, Sun J, Curran E, Qian Y, Yan L, Patterson SD, Courchesne PL, Richards B, Levin N et al (2000) Identification and characterization of proSAAS, a granin-like neuroendocrine peptide precursor that inhibits prohormone processing. J Neurosci 20:639–648

    PubMed  CAS  Google Scholar 

  • Gamble KL, Allen GC, Zhou T, McMahon DG (2007) Gastrin-releasing peptide mediates light-like resetting of the suprachiasmatic nucleus circadian pacemaker through cAMP response element-binding protein and Per1 activation. J Neurosci 27:12078–12087

    Article  PubMed  CAS  Google Scholar 

  • Gannon RL, Cato MJ, Kelley KH, Armstrong DL, Rea MA (1995) GABAergic modulation of optic nerve-evoked field potentials in the rat suprachiasmatic nucleus. Brain Res 694:264–270

    Article  PubMed  CAS  Google Scholar 

  • Gao B, Fritschy JM, Moore RY (1995) GABA A-receptor subunit composition in the circadian timing system. Brain Res 700:142–156

    Article  PubMed  CAS  Google Scholar 

  • Gerhold LM, Wise PM (2006) Vasoactive intestinal polypeptide regulates dynamic changes in astrocyte morphometry: impact on gonadotropin releasing hormone neurons. Endocrinology 147:2197–21202

    Article  PubMed  CAS  Google Scholar 

  • Gerhold LM, Rosewell KL, Wise PM (2005) Suppression of vasoactive intestinal polypeptide in the suprachiasmatic nucleus leads to aging-like alterations in cAMP rhythms and activation of gonadotropin-releasing hormone neurons. J Neurosci 25:62–67

    Article  PubMed  CAS  Google Scholar 

  • Gerkema MP, Shinohara K, Kimura F (1999) Lack of circadian patterns in vasoactive intestinal polypeptide release and variability in vasopressin release in vole suprachiasmatic nuclei in vitro. Neurosci Lett 259:107–110

    Article  PubMed  CAS  Google Scholar 

  • Graham ES, Littlewood P, Turnbull Y, Mercer JG, Morgan PJ, Barrett P (2005) Neuromedin-U is regulated by the circadian clock in the SCN of the mouse. Eur J Neurosci 21:814–819

    Article  PubMed  Google Scholar 

  • Green DJ, Gillette R (1982) Circadian rhythm of firing rate from single cells in the rat suprachiasmatic brain slice. Brain Res 245:198–200

    Article  PubMed  CAS  Google Scholar 

  • Gribkoff VK, Pieschl RL, Dudek FE (2003) GABA receptor-mediated inhibition of neuronal activity in rat SCN in vitro: pharmacology and influence of circadian phase. J Neurophysiol 90(3):1438–1448

    Article  PubMed  CAS  Google Scholar 

  • Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355

    Article  PubMed  CAS  Google Scholar 

  • Harmar AJ, Marston HM, Shen S, Spratt C, West KM, Sheward WJ, Morrison CF, Dorin JR, Piggins HD, Reubi JC et al (2002) The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109:497–508

    Article  PubMed  CAS  Google Scholar 

  • Hastings MH (1997) Central clocking. Trends Neurosci 20:459–464

    Article  PubMed  CAS  Google Scholar 

  • Hatcher NG, Atkins N, Annangudi SP, Forbes AJ, Kelleher NL, Gillette MU, Sweedler JV (2008) Mass spectrometry-based discovery of circadian peptides. Proc Natl Acad Sci USA 105:12527–12532

    Article  PubMed  CAS  Google Scholar 

  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Article  PubMed  CAS  Google Scholar 

  • Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    Article  PubMed  CAS  Google Scholar 

  • Herzog ED, Huckfeldt RM (2003) Circadian entrainment to temperature, but not light, in the isolated suprachiasmatic nucleus. J Neurophysiol 90:763–770

    Article  PubMed  Google Scholar 

  • Herzog ED, Geusz ME, Khalsa SBS, Straume M, Block GD (1997) Circadian rhythms in mouse suprachiasmatic nucleus explants on multimicroelectrode plates. Brain Res 757:285–290

    Article  PubMed  CAS  Google Scholar 

  • Herzog ED, Takahashi JS, Block GD (1998) Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nat Neurosci 1:708–713

    Article  PubMed  CAS  Google Scholar 

  • Honma S, Katsuno Y, Tanahashi Y, Abe H, Honma KI (1998a) Circadian rhythms of arginine-vasopressin and vasoactive intestinal polypeptide do not depend on cytoarchitecture of dispersed cell culture rat suprachiasmatic nucleus. Neuroscience 86:967–976

    Article  PubMed  CAS  Google Scholar 

  • Honma S, Shirakawa T, Katsuno Y, Namihira M, Honma KI (1998b) Circadian periods of single suprachiasmatic neurons in rats. Neurosci Lett 250:157–160

    Article  PubMed  CAS  Google Scholar 

  • Ingram CD, Snowball RK, Mihai R (1996) Circadian rhythm of neuronal activity in suprachiasmatic nucleus slices from the vasopressin-deficient Brattleboro rat. Neuroscience 75:635–641

    Article  PubMed  CAS  Google Scholar 

  • Inouye ST, Kawamura H (1982) Characteristics of a circadian pacemaker in the suprachiasmatic nucleus. J Comp Physiol A 146:153–160

    Article  Google Scholar 

  • Irwin RP, Allen CN (2009) GABAergic signaling induces divergent neuronal Ca2+ responses in the suprachiasmatic nucleus network. Eur J Neurosci 30:1462–1475

    Article  PubMed  Google Scholar 

  • Irwin RP, Allen CN (2010) Neuropeptide-mediated calcium signaling in the suprachiasmatic nucleus network. Eur J Neurosci 32:1497–1506

    Article  PubMed  Google Scholar 

  • Ishikawa M, Mizobuchi M, Takahashi H, Bando H, Saito S (1997) Somatostatin release as measured by in vivo microdialysis: circadian variation and effect of prolonged food deprivation. Brain Res 749:226–231

    Article  PubMed  CAS  Google Scholar 

  • Jansen K, Van der Zee EA, Gerkema MP (2007) Vasopressin immunoreactivity, but not vasoactive intestinal polypeptide, correlates with expression of circadian rhythmicity in the suprachiasmatic nucleus of voles. Neuropeptides 41(4):207–216

    Article  PubMed  CAS  Google Scholar 

  • Jin X, Shearman LP, Weaver DR, Zylka MJ, De Vries GJ, Reppert SM (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96:57–68

    Article  PubMed  CAS  Google Scholar 

  • Kalamatianos T, Kalló I, Piggins HD, Coen CW (2004) Expression of VIP and/or PACAP receptor mRNA in peptide synthesizing cells within the suprachiasmatic nucleus of the rat and in its efferent target sites. J Comp Neurol 475:19–35

    Article  PubMed  CAS  Google Scholar 

  • Kallingal GJ, Mintz EM (2006) Glutamatergic activity modulates the phase-shifting effects of gastrin-releasing peptide and light. Eur J Neurosci 24:2853–2858

    Article  PubMed  Google Scholar 

  • Kallo II, Kalamatianos T, Wiltshire N, Shen S, Sheward WJ, Harmar AJ, Coen CW (2004) Transgenic approach reveals expression of the VPAC receptor in phenotypically defined neurons in the mouse suprachiasmatic nucleus and in its efferent target sites. Eur J Neurosci 19:2201–2211

    Article  PubMed  Google Scholar 

  • Karatsoreos IN, Yan L, LeSauter J, Silver R (2004) Phenotype matters: identification of light-responsive cells in the mouse suprachiasmatic nucleus. J Neurosci 24:68–75

    Article  PubMed  CAS  Google Scholar 

  • Karatsoreos IN, Romeo RD, McEwen BS, Silver R (2006) Diurnal regulation of the gastrin-releasing peptide receptor in the mouse circadian clock. Eur J Neurosci 23:1047–1053

    Article  PubMed  Google Scholar 

  • Kim DY, Kang HC, Shin HC, Lee KJ, Yoon YW, Han HC, Na HS, Hong SK, Kim YI (2001) Substance p plays a critical role in photic resetting of the circadian pacemaker in the rat hypothalamus. J Neurosci 21:4026–4031

    PubMed  CAS  Google Scholar 

  • Klein DC, Moore RY, Reppert SM (1991) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York

    Google Scholar 

  • Kramer A, Yang FC, Snodgrass P, Li X, Scammell TE, Davis FC, Weitz CJ (2001) Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294:2511–2515

    Article  PubMed  CAS  Google Scholar 

  • Kraves S, Weitz CJ (2006) A role for cardiotrophin-like cytokine in the circadian control of mammalian locomotor activity. Nat Neurosci 9:212–219

    Article  PubMed  CAS  Google Scholar 

  • Laemle LK, Ottenweller JE, Fugaro C (1995) Diurnal variations in vasoactive intestinal polypeptide-like immunoreactivity in the suprachiasmatic nucleus of congenitally anophthalmic mice. Brain Res 688:203–208

    Article  PubMed  CAS  Google Scholar 

  • Landolt HP, Dijk DJ, Gaus SE, Borbely AA (1995) Caffeine reduces low-frequency delta activity in the human sleep EEG. Neuropsychopharmacology 12:229–238

    Article  PubMed  CAS  Google Scholar 

  • Lavialle M, Serviere J (1993) Circadian fluctuations in GFAP distribution in the Syrian hamster suprachiasmatic nucleus. Neuroreport 4:1243–1246

    Article  PubMed  CAS  Google Scholar 

  • Leak RK, Moore RY (2001) Topographic organization of suprachiasmatic nucleus projection neurons. J Comp Neurol 433:312–334

    Article  PubMed  CAS  Google Scholar 

  • Lee JE, Atkins N, Hatcher NG, Zamdborg L, Gillette MU, Sweedler JV, Kelleher NL (2010) Endogenous peptide discovery of the rat circadian clock: a focused study of the suprachiasmatic nucleus by ultrahigh performance tandem mass spectrometry. Mol Cell Proteomics 9:285–297

    Article  PubMed  CAS  Google Scholar 

  • LeSauter J, Stevens P, Jansen H, Lehman MN, Silver R (1999) Calbindin expression in the hamster SCN is influenced by circadian genotype and by photic conditions. Neuroreport 10:3159–3163

    Article  PubMed  CAS  Google Scholar 

  • Li J-D, Burton KJ, Zhang C, Hu S-B, Zhou Q-Y (2009) Vasopressin receptor V1a regulates circadian rhythms of locomotor activity and expression of clock-controlled genes in the suprachiasmatic nuclei. Am J Physiol Regul Integr Comp Physiol 296:R824–R830

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Reppert SM (2000) GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 25:123–128

    Article  PubMed  CAS  Google Scholar 

  • Liu AC, Welsh DK, Ko CH, Tran HG, Zhang EE, Priest AA, Buhr ED, Singer O, Meeker K, Verma IM et al (2007) Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129:605–616

    Article  PubMed  CAS  Google Scholar 

  • Malarkey EB, Parpura V (2008) Mechanisms of glutamate release from astrocytes. Neurochem Int 52:142–154

    Article  PubMed  CAS  Google Scholar 

  • Marpegan L, Krall TJ, Herzog ED (2009) Vasoactive intestinal polypeptide entrains circadian rhythms in astrocytes. J Biol Rhythms 24:135–143

    Article  PubMed  CAS  Google Scholar 

  • Marpegan L, Swanstrom AE, Chung K, Simon T, Haydon PG, Khan SK, Liu AC, Herzog ED, Beaulé C (2011) Circadian regulation of ATP release in astrocytes. J Neurosci (the official journal of the Society for Neuroscience) 31:8342–8350

    Article  CAS  Google Scholar 

  • Maywood ES, Reddy AB, Wong GK, O’Neill JS, O’Brien JA, McMahon DG, Harmar AJ, Okamura H, Hastings MH (2006) Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol 16:599–605

    Article  PubMed  CAS  Google Scholar 

  • Maywood ES, Chesham JE, Meng Q-J, Nolan PM, Loudon ASI, Hastings MH (2011a) Tuning the period of the mammalian circadian clock: additive and independent effects of CK1εTau and Fbxl3Afh mutations on mouse circadian behavior and molecular pacemaking. J Neurosci 31:1539–1544

    Article  PubMed  CAS  Google Scholar 

  • Maywood ES, Chesham JE, O’Brien JA, Hastings MH (2011b) A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci USA 108:14306–14311

    Article  PubMed  CAS  Google Scholar 

  • Meijer JH, Watanabe K, Schaap J, Albus H, Detari L (1998) Light responsiveness of the suprachiasmatic nucleus: long-term multiunit and single-unit recordings in freely moving rats. J Neurosci 18:9078–9087

    PubMed  CAS  Google Scholar 

  • Michel S, Geusz ME, Zaritsky JJ, Block GD (1993) Circadian rhythm in membrane conductance expressed in isolated neurons. Science 259:239–241

    Article  PubMed  CAS  Google Scholar 

  • Mihalcescu I, Hsing W, Leibler S (2004) Resilient circadian oscillator revealed in individual cyanobacteria. Nature 430:81–85

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in rat. Brain Res 42:201–206

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Speh JC, Leak RK (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309:89–98

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Miyazato M, Ida T, Murakami N, Serino R, Ueta Y, Kojima M, Kangawa K (2005) Identification of neuromedin S and its possible role in the mammalian circadian oscillator system. EMBO J 24(2):325–335

    Article  PubMed  CAS  Google Scholar 

  • Morin LP (2007) SCN organization reconsidered. J Biol Rhythms 22:3–13

    Article  PubMed  CAS  Google Scholar 

  • Moriya T, Yoshinobu Y, Kouzu Y, Katoh A, Gomi H, Ikeda M, Yoshioka T, Itohara S, Shibata S (2000) Involvement of glial fibrillary acidic protein (GFAP) expressed in astroglial cells in circadian rhythm under constant lighting conditions in mice. J Neurosci Res 60:212–218

    Article  PubMed  CAS  Google Scholar 

  • Murakami N, Takamure M, Takahashi K, Utunomiya K, Kuroda H, Etoh T (1991) Long-term cultured neurons from rat suprachiasmatic nucleus retain the capacity for circadian oscillation of vasopressin release. Brain Res 545:347–350

    Article  PubMed  CAS  Google Scholar 

  • Nakamura W, Honma S, Shirakawa T, Honma KI (2001) Regional pacemakers composed of multiple oscillator neurons in the rat suprachiasmatic nucleus. Eur J Neurosci 14:1–10

    Article  Google Scholar 

  • Nakamura W, Honma S, Shirakawa T, Honma KI (2002) Clock mutation lengthens the circadian period without damping rhythms in individual SCN neurons. Nat Neurosci 5:399–400

    PubMed  CAS  Google Scholar 

  • Ng FS, Tangredi MM, Jackson FR (2011) Glial cells physiologically modulate clock neurons and circadian behavior in a calcium-dependent manner. Curr Biol 21:625–634

    Article  PubMed  CAS  Google Scholar 

  • Nitabach MN, Taghert PH (2008) Organization of the Drosophila circadian control circuit. Curr Biol 18:R84–R93

    Article  PubMed  CAS  Google Scholar 

  • Oike H, Kobori M, Suzuki T, Ishida N (2011) Caffeine lengthens circadian rhythms in mice. Biochem Biophys Res Commun 410:654–658

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63:83–92

    Article  PubMed  CAS  Google Scholar 

  • Pennartz CMA, de Jeu MTG, Bos NPA, Schaap J, Geurtsen AMS (2002) Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature 416:286–290

    Article  PubMed  CAS  Google Scholar 

  • Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431

    Article  PubMed  CAS  Google Scholar 

  • Piggins HD, Antle MC, Rusak B (1995) Neuropeptides phase shift the mammalian circadian pacemaker. J Neurosci 15:5612–5622

    PubMed  CAS  Google Scholar 

  • Portaluppi F, Tiseo R, Smolensky MH, Hermida RC, Ayala DE, Fabbian F (2012) Circadian rhythms and cardiovascular health. Sleep Med Rev 16:151–166

    Article  PubMed  Google Scholar 

  • Prolo LM, Takahashi JS, Herzog ED (2005) Circadian rhythm generation and entrainment in astrocytes. J Neurosci 25:404–408

    Article  PubMed  CAS  Google Scholar 

  • Quintero JE, Kuhlman SJ, McMahon DG (2003) The biological clock nucleus: a multiphasic oscillator network regulated by light. J Neurosci 23:8070–8076

    PubMed  CAS  Google Scholar 

  • Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978

    Article  PubMed  CAS  Google Scholar 

  • Reed HE, Meyer-Spasche A, Cutler DJ, Coen CW, Piggins HD (2001) Vasoactive intestinal polypeptide (VIP) phase-shifts the rat suprachiasmatic nucleus clock in vitro. Eur J Neurosci 13:839–843

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Artman HG, Swaminathan S, Fisher DA (1981) Vasopressin exhibits a rhythmic daily pattern in cerebrospinal fluid but not in blood. Science 213:1256–1257

    Article  PubMed  CAS  Google Scholar 

  • Ribelayga C, Cao Y, Mangel SC (2008) The circadian clock in the retina controls rod-cone coupling. Neuron 59:790–801

    Article  PubMed  CAS  Google Scholar 

  • Robinson BG, Frim DM, Schwartz WJ, Majzoub JA (1988) Vasopressin mRNA in the suprachiasmatic nuclei: daily regulation of polyadenylate tail length. Science 241:342–344

    Article  PubMed  CAS  Google Scholar 

  • Rusnak M, Tóth ZE, House SB, Gainer H (2007) Depolarization and neurotransmitter regulation of vasopressin gene expression in the rat suprachiasmatic nucleus in vitro. J Neurosci 27:141–151

    Article  PubMed  CAS  Google Scholar 

  • Shigeyoshi Y, Taguchi K, Yamamoto S, Takekida S, Yan L, Tei H, Moriya T, Shibata S, Loros JJ, Dunlap JC et al (1997) Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91:1043–1053

    Article  PubMed  CAS  Google Scholar 

  • Shinohara K, Tominaga K, Isobe Y, Inouye ST (1993) Photic regulation of peptides located in the ventrolateral subdivision of the suprachiasmatic nucleus of the rat: daily variations of vasoactive intestinal polypeptide, gastrin-releasing peptide, and neuropeptide Y. J Neurosci 13:793–800

    PubMed  CAS  Google Scholar 

  • Shinohara K, Honma S, Katsuno Y, Abe H, Honma KI (1995) Two distinct oscillators in the rat suprachiasmatic nucleus in vitro. Proc Natl Acad Sci USA 92:7396–7400

    Article  PubMed  CAS  Google Scholar 

  • Shinohara K, Tominaga K, Inouye ST (1998) Luminance-dependent decrease in vasoactive intestinal polypeptide in the rat suprachiasmatic nucleus. Neurosci Lett 251:21–24

    Article  PubMed  CAS  Google Scholar 

  • Shinohara K, Honma S, Katsuno Y, Honma K (2000) Circadian release of excitatory amino acids in the suprachiasmatic nucleus culture is Ca(2+)-independent. Neurosci Res 36:245–250

    Article  PubMed  CAS  Google Scholar 

  • Silver R, Lehman MN, Gibson M, Gladstone WR, Bittman EL (1990) Dispersed cell suspensions of fetal SCN restore circadian rhythmicity in SCN-lesioned adult hamsters. Brain Res 525:45–58

    Article  PubMed  CAS  Google Scholar 

  • Sodersten P, De Vries GJ, Buijs RM, Melin P (1985) A daily rhythm in behavioral vasopressin sensitivity and brain vasopressin concentrations. Neurosci Lett 58:37–41

    Article  PubMed  CAS  Google Scholar 

  • Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69:1583–1586

    Article  PubMed  CAS  Google Scholar 

  • Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385

    Article  PubMed  CAS  Google Scholar 

  • Suh J, Jackson FR (2007) Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 55:435–447

    Article  PubMed  CAS  Google Scholar 

  • Sujino M, Masumoto K, Yamaguchi S, van der Horst GT, Okamura H, Inouye SI (2003) Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr Biol 13:664–668

    Article  PubMed  CAS  Google Scholar 

  • Swaab DF, Pool CW, Nijveldt F (1975) Immunofluorescence of vasopressin and oxytocin in the rat hypothalamo-neurohypophypopseal system. J Neural Transm 36:195–215

    Article  PubMed  CAS  Google Scholar 

  • Tominaga K, Shinohara K, Otori Y, Fukuhara C, Inouye ST (1992) Circadian rhythms of vasopressin content in the suprachiasmatic nucleus of the rat. Neuroreport 3:809–812

    Article  PubMed  CAS  Google Scholar 

  • Tousson E, Meissl H (2004) Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus. J Neurosci 24:2983–2988

    Article  PubMed  CAS  Google Scholar 

  • Usdin TB, Bonner TI, Mezey E (1994) Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology 135:2662–2680

    Article  PubMed  CAS  Google Scholar 

  • Vandesande F, DeMey J, Dierickx K (1974) Identification of neurophysin producing cells. I. The origin of the neurophysin-like substance-containing nerve fibres of the external region of the median eminence of the rat. Cell Tissue Res 151:187–200

    Article  PubMed  CAS  Google Scholar 

  • Vosko AM, Schroeder A, Loh DH, Colwell CS (2007) Vasoactive intestinal peptide and the mammalian circadian system. Gen Comp Endocrinol 152:165–175

    Article  PubMed  CAS  Google Scholar 

  • Wagner S, Castel M, Gainer H, Yarom Y (1997) GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature 387:598–603

    Article  PubMed  CAS  Google Scholar 

  • Wallén P, Christenson J, Brodin L, Hill R, Lansner A, Grillner S (1989) Mechanisms underlying the serotonergic modulation of the spinal circuitry for locomotion in lamprey. Prog Brain Res 80:321–327, discussion 315–319

    Article  PubMed  Google Scholar 

  • Webb AB, Angelo N, Huettner JE, Herzog ED (2009) Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons. Proc Natl Acad Sci USA 106:16493–16498

    Article  PubMed  CAS  Google Scholar 

  • Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706

    Article  PubMed  CAS  Google Scholar 

  • Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577

    Article  PubMed  CAS  Google Scholar 

  • Womac AD, Burkeen JF, Neuendorff N, Earnest DJ, Zoran MJ (2009) Circadian rhythms of extracellular ATP accumulation in suprachiasmatic nucleus cells and cultured astrocytes. Eur J Neurosci 30:869–876

    Article  PubMed  Google Scholar 

  • Wright KP, Badia P, Myers BL, Plenzler SC (1997) Combination of bright light and caffeine as a countermeasure for impaired alertness and performance during extended sleep deprivation. J Sleep Res 6:26–35

    Article  PubMed  Google Scholar 

  • Wyatt JK, Cajochen C, Ritz-De Cecco A, Czeisler CA, Dijk DJ (2004) Low-dose repeated caffeine administration for circadian-phase-dependent performance degradation during extended wakefulness. Sleep 27:374–381

    PubMed  Google Scholar 

  • Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, Okamura H (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302:1408–1412

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki S, Ishida Y, Inouye S (1994) Circadian rhythms of adenosine triphosphate contents in the suprachiasmatic nucleus, anterior hypothalamic area and caudate putamen of the rat–negative correlation with electrical activity. Brain Res 664:237–240

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki S, Kerbeshian MC, Hocker CG, Block GD, Menaker M (1998) Rhythmic properties of the hamster suprachiasmatic nucleus in vivo. J Neurosci 18:10709–10723

    PubMed  CAS  Google Scholar 

  • Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    Article  PubMed  CAS  Google Scholar 

  • Zhou QY, Cheng MY (2005) Prokineticin 2 and circadian clock output. FEBS J 272:5703–5709

    Article  PubMed  CAS  Google Scholar 

  • Zusev M, Gozes I (2004) Differential regulation of activity-dependent neuroprotective protein in rat astrocytes by VIP and PACAP. Regul Pept 123:33–41

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emily Slat , G. Mark Freeman Jr. or Erik D. Herzog .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Slat, E., Freeman, G.M., Herzog, E.D. (2013). The Clock in the Brain: Neurons, Glia, and Networks in Daily Rhythms. In: Kramer, A., Merrow, M. (eds) Circadian Clocks. Handbook of Experimental Pharmacology, vol 217. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25950-0_5

Download citation

Publish with us

Policies and ethics