Advertisement

Genome-Wide Analyses of Circadian Systems

  • Akhilesh B. ReddyEmail author
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 217)

Abstract

Circadian gene expression is a pervasive feature of tissue physiology, regulating approx. 10% of transcript and protein abundance in tissues such as the liver. Technological developments have accelerated our ability to probe circadian variation of gene expression, in particular by using microarrays. Recent advances in high-throughput sequencing have similarly led to novel insights into the regulation of genes at the DNA and chromatin levels. Furthermore, tools such as RNA interference are being used to perturb gene function at a truly systems level, allowing dissection of the clockwork in increasing depth. This chapter will highlight progress in these areas, focusing on key techniques that have helped, and will continue to help, with the investigation of circadian physiology.

Keywords

Transcriptomics Genomics Systems biology Clock Circadian ChIP-chip ChIP-seq RNA-seq Interferomics Proteomics Metabolomics 

Notes

Acknowledgments

Supported by the Wellcome Trust (083643/Z/07/Z), the European Research Council (ERC) Grant No. 281348 (MetaCLOCK), NIHR Cambridge Biomedical Research Centre, and the MRC Centre for Obesity and Related Metabolic Disorders (MRC CORD).

References

  1. Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG, Gant TW, Hastings MH, Kyriacou CP (2002) Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12:540–550PubMedCrossRefGoogle Scholar
  2. Baggs JE, Hogenesch JB (2010) Genomics and systems approaches in the mammalian circadian clock. Curr Opin Genet Dev 20:581–587PubMedCrossRefGoogle Scholar
  3. Bieda M, Xu X, Singer MA, Green R, Farnham PJ (2006) Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome. Genome Res 16:595–605PubMedCrossRefGoogle Scholar
  4. Buck MJ, Lieb JD (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83:349–360PubMedCrossRefGoogle Scholar
  5. Buhr ED, Takahashi JS (2013) Molecular components of the mammalian circadian clock. In: Kramer A, Merrow M (eds) Circadian clocks, vol 127, Handbook of experimental pharmacology. Springer, HeidelbergGoogle Scholar
  6. Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K (2007) microRNA modulation of circadian-clock period and entrainment. Neuron 54:813–829PubMedCrossRefGoogle Scholar
  7. Farnham PJ (2009) Insights from genomic profiling of transcription factors. Nat Rev Genet 10:605–616PubMedCrossRefGoogle Scholar
  8. Gatfield D, Le Martelot G, Vejnar CE, Gerlach D, Schaad O, Fleury-Olela F, Ruskeepaa AL, Oresic M, Esau CC, Zdobnov EM, Schibler U (2009) Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev 23:1313–1326PubMedCrossRefGoogle Scholar
  9. Hanash S (2003) Disease proteomics. Nature 422:226–232PubMedCrossRefGoogle Scholar
  10. Harmer SL, Hogenesch JB, Straume M, Chang H-S, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113PubMedCrossRefGoogle Scholar
  11. Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4:649–661PubMedCrossRefGoogle Scholar
  12. Hastings MH, Reddy AB, McMahon DG, Maywood ES (2005) Analysis of circadian mechanisms in the suprachiasmatic nucleus by transgenesis and biolistic transfection. Methods Enzymol 393:579–592PubMedCrossRefGoogle Scholar
  13. Hawkins RD, Hon GC, Ren B (2010) Next-generation genomics: an integrative approach. Nat Rev Genet 11:476–486PubMedGoogle Scholar
  14. Hirota T, Lee JW, Lewis WG, Zhang EE, Breton G, Liu X, Garcia M, Peters EC, Etchegaray JP, Traver D, Schultz PG, Kay SA (2010) High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIalpha as a clock regulatory kinase. PLoS Biol 8:e1000559PubMedCrossRefGoogle Scholar
  15. Horak CE, Mahajan MC, Luscombe NM, Gerstein M, Weissman SM, Snyder M (2002) GATA-1 binding sites mapped in the beta-globin locus by using mammalian chIp-chip analysis. Proc Natl Acad Sci USA 99:2924–2929PubMedCrossRefGoogle Scholar
  16. Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S, Baggs JE, Panda S, Hogenesch JB (2009) Harmonics of circadian gene transcription in mammals. PLoS Genet 5:e1000442PubMedCrossRefGoogle Scholar
  17. Johnson CH, Mori T, Xu Y (2008) A cyanobacterial circadian clockwork. Curr Biol 18:R816–R825PubMedCrossRefGoogle Scholar
  18. Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS (2012) Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338(6105):349–354PubMedCrossRefGoogle Scholar
  19. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705PubMedCrossRefGoogle Scholar
  20. Kucho K, Okamoto K, Tsuchiya Y, Nomura S, Nango M, Kanehisa M, Ishiura M (2005) Global analysis of circadian expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 187:2190–2199PubMedCrossRefGoogle Scholar
  21. Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, Darnell JC, Darnell RB (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469PubMedCrossRefGoogle Scholar
  22. Maier B, Wendt S, Vanselow JT, Wallach T, Reischl S, Oehmke S, Schlosser A, Kramer A (2009) A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. Genes Dev 23:708–718PubMedCrossRefGoogle Scholar
  23. Marguerat S, Bahler J (2010) RNA-seq: from technology to biology. Cell Mol Life Sci 67:569–579PubMedCrossRefGoogle Scholar
  24. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320PubMedCrossRefGoogle Scholar
  25. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680PubMedCrossRefGoogle Scholar
  26. Pepke S, Wold B, Mortazavi A (2009) Computation for ChIP-seq and RNA-seq studies. Nat Methods 6:S22–S32PubMedCrossRefGoogle Scholar
  27. Polidarova L, Sladek M, Sotak M, Pacha J, Sumova A (2011) Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding. Chronobiol Int 28:204–215PubMedCrossRefGoogle Scholar
  28. Reddy AB, O’Neill JS (2009) Healthy clocks, healthy body, healthy mind. Trends Cell Biol 20:36–44PubMedCrossRefGoogle Scholar
  29. Reddy AB, O’Neill JS (2010) Healthy clocks, healthy body, healthy mind. Trends Cell Biol 20:36–44PubMedCrossRefGoogle Scholar
  30. Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, O’Neill JS, Wong GKY, Chesham J, Odell M, Lilley KS, Kyriacou CP, Hastings MH (2006) Circadian orchestration of the hepatic proteome. Curr Biol 16:1107–1115PubMedCrossRefGoogle Scholar
  31. Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M, Naef F (2011) Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol 9:e1000595PubMedCrossRefGoogle Scholar
  32. Ripperger JA, Schibler U (2006) Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 38:369–374PubMedCrossRefGoogle Scholar
  33. Robles MS, Mann M (2013) Proteomic approaches in circadian biology. In: Kramer A, Merrow M (eds) Circadian clocks, vol 127, Handbook of experimental pharmacology. Springer, HeidelbergGoogle Scholar
  34. Scacheri PC, Crawford GE, Davis S (2006) Statistics for ChIP-chip and DNase hypersensitivity experiments on NimbleGen arrays. Methods Enzymol 411:270–282PubMedCrossRefGoogle Scholar
  35. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342PubMedCrossRefGoogle Scholar
  36. Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83PubMedCrossRefGoogle Scholar
  37. Ueda HR, Chen W, Adachi A, Wakamatsu H, Hayashi S, Takasugi T, Nagano M, Nakahama K, Suzuki Y, Sugano S, Iino M, Shigeyoshi Y, Hashimoto S (2002) A transcription factor response element for gene expression during circadian night. Nature 418:534–539PubMedCrossRefGoogle Scholar
  38. Vijayan V, Zuzow R, O’Shea EK (2009) Oscillations in supercoiling drive circadian gene expression in cyanobacteria. Proc Natl Acad Sci USA 106:22564–22568PubMedCrossRefGoogle Scholar
  39. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63PubMedCrossRefGoogle Scholar
  40. Wang Z, Kayikci M, Briese M, Zarnack K, Luscombe NM, Rot G, Zupan B, Curk T, Ule J (2010) iCLIP predicts the dual splicing effects of TIA-RNA interactions. PLoS Biol 8:e1000530PubMedCrossRefGoogle Scholar
  41. Woelfle MA, Xu Y, Qin X, Johnson CH (2007) Circadian rhythms of superhelical status of DNA in cyanobacteria. Proc Natl Acad Sci USA 104:18819–18824PubMedCrossRefGoogle Scholar
  42. Wu J, Smith LT, Plass C, Huang TH (2006) ChIP-chip comes of age for genome-wide functional analysis. Cancer Res 66:6899–6902PubMedCrossRefGoogle Scholar
  43. Yamaguchi S, Kobayashi M, Mitsui S, Ishida Y, van der Horst GTJ, Suzuki M, Shibata S, Okamura H (2001) View of a mouse clock gene ticking. Nature 409:684PubMedCrossRefGoogle Scholar
  44. Yang M, Lee JE, Padgett RW, Edery I (2008) Circadian regulation of a limited set of conserved microRNAs in Drosophila. BMC Genomics 9:83PubMedCrossRefGoogle Scholar
  45. Zhang EE, Liu AC, Hirota T, Miraglia LJ, Welch G, Pongsawakul PY, Liu X, Atwood A, Huss JW 3rd, Janes J, Su AI, Hogenesch JB, Kay SA (2009) A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell 139:199–210PubMedCrossRefGoogle Scholar
  46. Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, Mynatt RL, Gimble JM (2006) Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55:962–970PubMedCrossRefGoogle Scholar
  47. Zvonic S, Ptitsyn AA, Kilroy G, Wu X, Conrad SA, Scott LK, Guilak F, Pelled G, Gazit D, Gimble JM (2007) Circadian oscillation of gene expression in murine calvarial bone. J Bone Miner Res 22:357–365PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, NIHR Cambridge Biomedical Research Centre, Institute of Metabolic ScienceUniversity of Cambridge, Addenbrooke’s HospitalCambridgeUK

Personalised recommendations