Mathematical Modeling in Chronobiology

  • G. BordyugovEmail author
  • P. O. Westermark
  • A. Korenčič
  • S. Bernard
  • H. Herzel
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 217)


Circadian clocks are autonomous oscillators entrained by external Zeitgebers such as light–dark and temperature cycles. On the cellular level, rhythms are generated by negative transcriptional feedback loops. In mammals, the suprachiasmatic nucleus (SCN) in the anterior part of the hypothalamus plays the role of the central circadian pacemaker. Coupling between individual neurons in the SCN leads to precise self-sustained oscillations even in the absence of external signals. These neuronal rhythms orchestrate the phasing of circadian oscillations in peripheral organs. Altogether, the mammalian circadian system can be regarded as a network of coupled oscillators. In order to understand the dynamic complexity of these rhythms, mathematical models successfully complement experimental investigations. Here we discuss basic ideas of modeling on three different levels (1) rhythm generation in single cells by delayed negative feedbacks, (2) synchronization of cells via external stimuli or cell–cell coupling, and (3) optimization of chronotherapy.


Bifurcations Entrainment Modelling Oscillations Synchronization 



The authors thank Jana Hinners and Anna Erzberger for their contributions to numerical simulations, Adrian E. Granada, Michael Mackey, and Francis Levi for fruitful discussions, and DFG (SFB 618, InKomBio) and BMBF (ColoNet, Circage FKZ 0315899) for financial support.


  1. Abraham U, Granada AE, Westermark PO, Heine M, Kramer A, Herzel H (2010) Coupling governs entrainment range of circadian clocks. Mol Syst Biol 6:438PubMedCrossRefGoogle Scholar
  2. Andersen L, Mackey M (2001) Resonance in periodic chemotherapy: a case study of acute myelogenous leukemia. J Theor Biol 209:113–130PubMedCrossRefGoogle Scholar
  3. Aton S, Colwell C, Harmar A, Waschek J, Herzog E (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8:476–483PubMedGoogle Scholar
  4. Ballesta A, Dulong S, Abbara C, Cohen B, Okyar A, Clairambault J, Levi F (2011) A combined experimental and mathematical approach for molecular-based optimization of irinotecan circadian delivery. PLoS Comput Biol 7:e1002143PubMedCrossRefGoogle Scholar
  5. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937PubMedCrossRefGoogle Scholar
  6. Basdevant C, Clairambault J, Lévi F (2005) Optimisation of time-scheduled regimen for anti-cancer drug infusion. ESAIM Math Model Numer Anal 39:1069–1086CrossRefGoogle Scholar
  7. Becker-Weimann S, Wolf J, Herzel H, Kramer A (2004) Modeling feedback loops of the mammalian circadian oscillator. Biophys J 87:3023–3034PubMedCrossRefGoogle Scholar
  8. Bellet M, Sassone-Corsi P (2010) Mammalian circadian clock and metabolism–the epigenetic link. J Cell Sci 123:3837–3848PubMedCrossRefGoogle Scholar
  9. Bell-Pedersen D, Cassone V, Earnest D, Golden S, Hardin P, Thomas T, Zoran M (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6:544–556PubMedCrossRefGoogle Scholar
  10. Bernard S, Bernard B, Lévi F, Herzel H (2010) Tumor growth rate determines the timing of optimal chronomodulated treatment schedules. PLoS Comput Biol 6:e1000712PubMedCrossRefGoogle Scholar
  11. Bordyugov G, Granada A, Herzel H (2011) How coupling determines the entrainment of circadian clocks. Eur Phys J B 82:227–234CrossRefGoogle Scholar
  12. Brown SA, Azzi A (2013) Peripheral circadian oscillators in mammals. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, HeidelbergCrossRefGoogle Scholar
  13. Brown S, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12:1574–1583PubMedCrossRefGoogle Scholar
  14. Buhr ED, Takahashi JS (2013) Molecular components of the mammalian circadian clock. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, HeidelbergCrossRefGoogle Scholar
  15. Buhr ED, Yoo SH, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330:379–385PubMedCrossRefGoogle Scholar
  16. Chauhan A, Lorenzen S, Herzel H, Bernard S (2011) Regulation of mammalian cell cycle progression in the regenerating liver. J Theor Biol 283:103–112PubMedCrossRefGoogle Scholar
  17. Daan S, Berde C (1978) Two coupled oscillators: simulations of the circadian pacemaker in mammalian activity rhythms. J Theor Biol 70:297–313PubMedCrossRefGoogle Scholar
  18. Derendorf H, Meibohm B (1999) Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm Res 16:176–185PubMedCrossRefGoogle Scholar
  19. Dibner C, Sage D, Unser M, Bauer C, d’Eysmond T, Naef F, Schibler U (2008) Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J 28:123–134PubMedCrossRefGoogle Scholar
  20. Ebeling W, Herzel H, Selkov EE (1983) The influence of noise on an oscillating glycolytic model. Studia Biophysica 98:147–154Google Scholar
  21. Enright J (1980) Temporal precision in circadian systems: a reliable neuronal clock from unreliable components? Science 209:1542–1545PubMedCrossRefGoogle Scholar
  22. Forger D (2011) Signal processing in cellular clocks. Proc Natl Acad Sci 108:4281–4285PubMedCrossRefGoogle Scholar
  23. Forger DB, Peskin CS (2003) A detailed predictive model of the mammalian circadian clock. Proc Natl Acad Sci USA 100:14806–14811PubMedCrossRefGoogle Scholar
  24. George E. P. Box and Norman Richard Draper Wiley (1987) Robustness in the strategy of scientific model building. Technical report, Defence Technical Information Center DocumentGoogle Scholar
  25. Glass L, Mackey M (1988) From clocks to chaos: the rhythms of life. University Press, Princeton, NJGoogle Scholar
  26. Gonze D, Bernard S, Waltermann C, Kramer A, Herzel H (2005) Spontaneous synchronization of coupled circadian oscillators. Biophys J 89:120–129PubMedCrossRefGoogle Scholar
  27. Goodwin B (1965) Oscillatory behavior in enzymatic control processes. Adv Enzyme Regul 3:425–428PubMedCrossRefGoogle Scholar
  28. Gorbacheva V, Kondratov R, Zhang R, Cherukuri S, Gudkov A, Takahashi J, Antoch M (2005) Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proc Natl Acad Sci USA 102:3407–3412PubMedCrossRefGoogle Scholar
  29. Granada AE, Herzel H (2009) How to achieve fast entrainment? The timescale to synchronization. PLoS One 4:e7057PubMedCrossRefGoogle Scholar
  30. Griffith J (1968) Mathematics of cellular control processes. I: Negative feedback to one gene. J Theor Biol 20:202–208PubMedCrossRefGoogle Scholar
  31. Hastings M, Reddy A, Maywood E et al (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4:649–661PubMedCrossRefGoogle Scholar
  32. Herzog ED, Aton SJ, Numano R, Sakaki Y, Tei H (2004) Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons. J Biol Rhythms 19:35–46PubMedCrossRefGoogle Scholar
  33. Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K, Kageyama R (2002) Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298:840–843PubMedCrossRefGoogle Scholar
  34. Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544PubMedGoogle Scholar
  35. Hoffmann A, Baltimore D (2006) Circuitry of nuclear factor κB signaling. Immunol Rev 210:171–186PubMedCrossRefGoogle Scholar
  36. Honma S, Nakamura W, Shirakawa T, Honma K (2004) Diversity in the circadian periods of single neurons of the rat suprachiasmatic nucleus depends on nuclear structure and intrinsic period. Neurosci Lett 358:173–176PubMedCrossRefGoogle Scholar
  37. Hrushesky W, Von Roemeling R, Sothern R (1989) Circadian chronotherapy: from animal experiments to human cancer chemotherapy. In: Lemmer B (ed) Chronopharamacology: cellular and biochemical interactions, vol 720. Marcel Dekker, New York, pp 439–473Google Scholar
  38. Hunt T, Sassone-Corsi P (2007) Riding tandem: circadian clocks and the cell cycle. Cell 129:461–464PubMedCrossRefGoogle Scholar
  39. Keller M, Mazuch J, Abraham U, Eom G, Herzog E, Volk H, Kramer A, Maier B (2009) A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci USA 106:21407–21412PubMedCrossRefGoogle Scholar
  40. Ko C, Yamada Y, Welsh D, Buhr E, Liu A, Zhang E, Ralph M, Kay S, Forger D, Takahashi J (2010) Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biol 8:e1000513PubMedCrossRefGoogle Scholar
  41. Korenčič A, Bordyugov G, Košir R, Rozman D, Goličik M, Herzel H (2012) The interplay of cis-regulator elements rules circadian rhythms in mouse liver. PLoS One 7(11):e0046835CrossRefGoogle Scholar
  42. Kronauer RE, Czeisler CA, Pilato SF, Moore-Ede MC, Weitzman ED (1982) Mathematical model of the human circadian system with two interacting oscillators. Am J Physiol 242:R3–17PubMedGoogle Scholar
  43. Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine A, Elowitz M, Alon U (2004) Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 36:147–150PubMedCrossRefGoogle Scholar
  44. Leloup JC, Goldbeter A (2003) Toward a detailed computational model for the mammalian circadian clock. Proc Natl Acad Sci USA 100:7051–7056PubMedCrossRefGoogle Scholar
  45. Lévi F, Schibler U (2007) Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol 47:593–628PubMedCrossRefGoogle Scholar
  46. Lévi F, Zidani R, Misset J et al (1997) Randomised multicentre trial of chronotherapy with oxaliplatin, fluorouracil, and folinic acid in metastatic colorectal cancer. Lancet 350:681–686PubMedCrossRefGoogle Scholar
  47. Lévi F, Altinok A, Clairambault J, Goldbeter A (2008) Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Philos Trans R Soc A 366:3575–3598CrossRefGoogle Scholar
  48. Lewis J (2003) Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr Biol 13:1398–1408PubMedCrossRefGoogle Scholar
  49. Liu AC, Welsh DK, Ko CH, Tran HG, Zhang EE, Priest AA, Buhr ED, Singer O, Meeker K, Verma IM, Doyle FJ, Takahashi JS, Kay SA (2007) Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129:605–616PubMedCrossRefGoogle Scholar
  50. Long M, Jutras M, Connors B, Burwell R (2005) Electrical synapses coordinate activity in the suprachiasmatic nucleus. Nat Neurosci 8:61–66PubMedCrossRefGoogle Scholar
  51. MacDonald N, Cannings C, Hoppensteadt F (2008) Biological delay systems: linear stability theory. University Press, Cambridge, MAGoogle Scholar
  52. Mackey M, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197:287–289PubMedCrossRefGoogle Scholar
  53. Minami Y, Ode KL, Ueda HR (2013) Mammalian circadian clock; the roles of transcriptional repression and delay. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, HeidelbergCrossRefGoogle Scholar
  54. Mirsky H, Liu A, Welsh D, Kay S, Doyle F (2009) A model of the cell-autonomous mammalian circadian clock. Proc Natl Acad Sci 106:11107–11112PubMedCrossRefGoogle Scholar
  55. Morelli LG, Jülicher F (2007) Precision of genetic oscillators and clocks. Phys Rev Lett 98:228101PubMedCrossRefGoogle Scholar
  56. Mormont M, Levi F (2003) Cancer chronotherapy: principles, applications, and perspectives. Cancer 97:155–169PubMedCrossRefGoogle Scholar
  57. Musiek ES, FitzGerald GA (2013) Molecular clocks in pharmacology. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, HeidelbergCrossRefGoogle Scholar
  58. Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705PubMedCrossRefGoogle Scholar
  59. Nelson D, Ihekwaba A, Elliott M, Johnson J, Gibney C, Foreman B, Nelson G, See V, Horton C, Spiller D et al (2004) Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306:704–708PubMedCrossRefGoogle Scholar
  60. olde Scheper T, Klinkenberg D, Pennartz C, van Pelt J et al (1999) A mathematical model for the intracellular circadian rhythm generator. J Neurosci 19:40–47Google Scholar
  61. Ortiz-Tudela E, Mteyrek A, Ballesta A, Innominato PF, Lévi F (2013) Cancer chronotherapeutics: experimental, theoretical and clinical aspects. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, HeidelbergCrossRefGoogle Scholar
  62. Oster H, Yasui A, Van Der Horst G, Albrecht U (2002) Disruption of mCry2 restores circadian rhythmicity in mPer2 mutant mice. Genes Dev 16:2633–2638PubMedCrossRefGoogle Scholar
  63. Pavlidis T (1973) Biological oscillators: their mathematical analysis. Academic, Waltham, MAGoogle Scholar
  64. Pfeuty B, Thommen Q, Lefranc M (2011) Robust entrainment of circadian oscillators requires specific phase response curves. Biophys J 100:2557–2565PubMedCrossRefGoogle Scholar
  65. Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–226PubMedCrossRefGoogle Scholar
  66. Raser J, O’Shea E (2005) Noise in gene expression: origins, consequences, and control. Science 309:2010–2013PubMedCrossRefGoogle Scholar
  67. Relógio A, Westermark P, Wallach T, Schellenberg K, Kramer A, Herzel H (2011) Tuning the mammalian circadian clock: robust synergy of two loops. PLoS Comput Biol 7:e1002309PubMedCrossRefGoogle Scholar
  68. Reppert S, Weaver D (2001) Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63:647–676PubMedCrossRefGoogle Scholar
  69. Robles M, Boyault C, Knutti D, Padmanabhan K, Weitz C (2010) Identification of RACK1 and protein kinase Cα as integral components of the mammalian circadian clock. Science 327:463–466PubMedCrossRefGoogle Scholar
  70. Ruoff P, Vinsjevik M, Monnerjahn C, Rensing L (2001) The Goodwin model: simulating the effect of light pulses on the circadian sporulation rhythm of Neurospora crassa. J Theor Biol 209:29–42PubMedCrossRefGoogle Scholar
  71. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342PubMedCrossRefGoogle Scholar
  72. Seidel H, Herzel H (1998) Bifurcations in a nonlinear model of the baroreceptor-cardiac reflex. Physica D 115:145–160CrossRefGoogle Scholar
  73. Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MSH (2009) Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res 16:45–58PubMedCrossRefGoogle Scholar
  74. Slat E, Freeman GM, Herzog ED (2013) The clock in the brain: neurons, glia and networks in daily rhythms. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, HeidelbergCrossRefGoogle Scholar
  75. Smith H (2010) An introduction to delay differential equations with applications to the life sciences. Springer, HeidelbergGoogle Scholar
  76. Smolen P, Hardin P, Lo B, Baxter D, Byrne J (2004) Simulation of Drosophila circadian oscillations, mutations, and light responses by a model with VRI, PDP-1, and CLK. Biophys J 86:2786–2802PubMedCrossRefGoogle Scholar
  77. Spörl F, Schellenberg K, Blatt T, Wenck H, Wittern K, Schrader A, Kramer A (2010) A circadian clock in HaCaT keratinocytes. J Invest Dermatol 131:338–348PubMedCrossRefGoogle Scholar
  78. Stokkan K, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–439PubMedCrossRefGoogle Scholar
  79. Tyson J, Hong C, Thron CD, Novak B (1999) A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM. Biophys J 77:2411–2417PubMedCrossRefGoogle Scholar
  80. Ukai H, Ueda HR (2010) Systems biology of mammalian circadian clocks. Annu Rev Physiol 72:579–603PubMedCrossRefGoogle Scholar
  81. Vanselow K, Vanselow JT, Westermark PO, Reischl S, Maier B, Korte T, Herrmann A, Herzel H, Schlosser A, Kramer A (2006) Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev 20:2660–2672PubMedCrossRefGoogle Scholar
  82. Webb A, Angelo N, Huettner J, Herzog E (2009) Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons. Proc Natl Acad Sci USA 106:16493–16498PubMedCrossRefGoogle Scholar
  83. Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706PubMedCrossRefGoogle Scholar
  84. Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577PubMedCrossRefGoogle Scholar
  85. Westermark PO, Welsh DK, Okamura H, Herzel H (2009) Quantification of circadian rhythms in single cells. PLoS Comput Biol 5:e1000580PubMedCrossRefGoogle Scholar
  86. Wever R (1965) A mathematical model for circadian rhythms. Circadian Clocks 47:47–63Google Scholar
  87. Winfree A (1980) The geometry of biological time. Springer, New YorkGoogle Scholar
  88. Yagita K, Okamura H (2000) Forskolin induces circadian gene expression of rPer1, rPer2 and dbp in mammalian rat-1 fibroblasts. FEBS Lett 465:79–82PubMedCrossRefGoogle Scholar
  89. Zhang EE, Kay SA (2010) Clocks not winding down: unravelling circadian networks. Nat Rev Mol Cell Biol 11:764–776PubMedCrossRefGoogle Scholar
  90. Zhang E, Liu A, Hirota T, Miraglia L, Welch G, Pongsawakul P, Liu X, Atwood A, Huss J III, Janes J et al (2009) A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell 139:199–210PubMedCrossRefGoogle Scholar
  91. Zielke N, Kim K, Tran V, Shibutani S, Bravo M, Nagarajan S, van Straaten M, Woods B, von Dassow G, Rottig C et al (2011) Control of Drosophila endocycles by E2F and CRL4CDT2. Nature 480:123–127PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. Bordyugov
    • 1
    Email author
  • P. O. Westermark
    • 2
  • A. Korenčič
    • 3
  • S. Bernard
    • 4
  • H. Herzel
    • 1
  1. 1.Institute for Theoretical BiologyHumboldt UniversityBerlinGermany
  2. 2.Institute for Theoretical BiologyCharité UniversitätsmedizinBerlinGermany
  3. 3.Institute of Biochemistry, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
  4. 4.Institut Camille Jordan CNRS UMR5208, University Lyon 1, Equipe Dracula Team InriaUniversity of LyonCedexFrance

Personalised recommendations