Pharmacological Modulators of the Circadian Clock as Potential Therapeutic Drugs: Focus on Genotoxic/Anticancer Therapy

  • Marina P. AntochEmail author
  • Roman V. Kondratov
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 217)


The circadian clock is an evolutionary conserved intrinsic timekeeping mechanism that controls daily variations in multiple biological processes. One important process that is modulated by the circadian clock is an organism’s response to genotoxic stress, such as that induced by anticancer drug and radiation treatments. Numerous observations made in animal models have convincingly demonstrated that drug-induced toxicity displays prominent daily variations; therefore, undesirable side effects could be significantly reduced by administration of drugs at specific times when they are better tolerated. In some cases, these critical times of the day coincide with increased sensitivity of tumor cells allowing for a greater therapeutic index. Despite encouraging results of chronomodulated therapies, our knowledge of molecular mechanisms underlying these observations remains sketchy. Here we review recent progress in deciphering mechanistic links between circadian and stress response pathways with a focus on how these findings could be applied to anticancer clinical practice. We discuss the potential for using high-throughput screens to identify small molecules that can modulate basic parameters of the entire circadian machinery as well as functional activity of its individual components. We also describe the discovery of several small molecules that can pharmacologically modulate clock and that have a potential to be developed into therapeutic drugs. We believe that translational applications of clock-targeting pharmaceuticals are twofold: they may be developed into drugs to treat circadian-related disorders or used in combination with existing therapeutic strategies to improve therapeutic index of a given genotoxic treatment via the intrinsic clock mechanism.


Cancer treatment Circadian DNA damage Pharmacological modulation Small molecule screen 



This work was supported by NIGMS grants GM095874 and GM075226 to M.P.A. and AG033881 and AG033604 to R.V.K.


  1. Antoch MP, Chernov MV (2009) Pharmacological modulators of the circadian clock as potential therapeutic drugs. Mutat Res 680(1–2):109–115PubMedGoogle Scholar
  2. Antoch MP, Kondratov RV (2011) Circadian proteins and genotoxic stress response. Circ Res 106(1):68–78CrossRefGoogle Scholar
  3. Antoch MP, Song EJ, Chang AM, Vitaterna MH, Zhao Y, Wilsbacher LD, Sangoram AM, King DP, Pinto LH, Takahashi JS (1997) Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89(4):655–667PubMedCrossRefGoogle Scholar
  4. Antoch MP, Gorbacheva VY, Vykhovanets O, Toshkov IA, Kondratov RV, Kondratova AA, Lee C, Nikitin AY (2008) Disruption of the circadian clock due to the Clock mutation has discrete effects on aging and carcinogenesis. Cell Cycle 7(9):1197–1204PubMedCrossRefGoogle Scholar
  5. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93(6):929–937PubMedCrossRefGoogle Scholar
  6. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U (2000a) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289(5488):2344–2347PubMedCrossRefGoogle Scholar
  7. Balsalobre A, Marcacci L, Schibler U (2000b) Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol 10(20):1291–1294PubMedCrossRefGoogle Scholar
  8. Barnes JW, Tischkau SA, Barnes JA, Mitchell JW, Burgoon PW, Hickok JR, Gillette MU (2003) Requirement of mammalian Timeless for circadian rhythmicity. Science 302(5644):439–442PubMedCrossRefGoogle Scholar
  9. Borgs L, Beukelaers P, Vandenbosch R, Belachew S, Nguyen L, Malgrange B (2009) Cell “circadian” cycle: new role for mammalian core clock genes. Cell Cycle 8(6):832–837PubMedCrossRefGoogle Scholar
  10. Buhr ED, Takahashi JS (2013) Molecular components of the mammalian circadian clock. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, HeidelbergCrossRefGoogle Scholar
  11. Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120(4):513–522PubMedCrossRefGoogle Scholar
  12. Chaves I, Nijman RM, Biernat MA, Bajek MI, Brand K, da Silva AC, Saito S, Yagita K, Eker AP, van der Horst GT (2011) The Potorous CPD photolyase rescues a cryptochrome-deficient mammalian circadian clock. PLoS One 6(8):e23447PubMedCrossRefGoogle Scholar
  13. Chen Z, McKnight SL (2007) A conserved DNA damage response pathway responsible for coupling the cell division cycle to the circadian and metabolic cycles. Cell Cycle 6(23):2906–2912PubMedCrossRefGoogle Scholar
  14. Chen Z, Yoo SH, Park YS, Kim KH, Wei S, Buhr E, Ye ZY, Pan HL, Takahashi JS (2012) Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc Natl Acad Sci USA 109(1):101–106PubMedCrossRefGoogle Scholar
  15. Cotta-Ramusino C, McDonald ER 3rd, Hurov K, Sowa ME, Harper JW, Elledge SJ (2011) A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling. Science 332(6035):1313–1317PubMedCrossRefGoogle Scholar
  16. Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125(3):497–508PubMedCrossRefGoogle Scholar
  17. Duguay D, Cermakian N (2009) The crosstalk between physiology and circadian clock proteins. Chronobiol Int 26(8):1479–1513PubMedCrossRefGoogle Scholar
  18. Edmunds LN Jr, Funch RR (1969) Circadian rhythm of cell division in Euglena: effects of random illumination regimen. Science 165(3892):500–503PubMedCrossRefGoogle Scholar
  19. Field MD, Maywood ES, O’Brien JA, Weaver DR, Reppert SM, Hastings MH (2000) Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 25(2):437–447PubMedCrossRefGoogle Scholar
  20. Fu L, Pelicano H, Liu J, Huang P, Lee C (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111(1):41–50PubMedCrossRefGoogle Scholar
  21. Gaddameedhi S, Selby CP, Kaufmann WK, Smart RC, Sancar A (2011) Control of skin cancer by the circadian rhythm. Proc Natl Acad Sci USA 108(46):18790–18795PubMedCrossRefGoogle Scholar
  22. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, Kroemer G (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14(7):1237–1243PubMedCrossRefGoogle Scholar
  23. Gehrisch A, Dorr W (2007) Effects of systemic or topical administration of sodium selenite on early radiation effects in mouse oral mucosa. Strahlenther Onkol 183(1):36–42PubMedCrossRefGoogle Scholar
  24. Gery S, Koeffler HP (2010) Circadian rhythms and cancer. Cell Cycle 9(6):1097–1103PubMedCrossRefGoogle Scholar
  25. Gery S, Komatsu N, Baldjyan L, Yu A, Koo D, Koeffler HP (2006) The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 22(3):375–382PubMedCrossRefGoogle Scholar
  26. Geyfman M, Andersen B (2010) Clock genes, hair growth and aging. Aging 2(3):122–128PubMedGoogle Scholar
  27. Gimble JM, Sutton GM, Ptitsyn AA, Floyd ZE, Bunnell BA (2011) Circadian rhythms in adipose tissue: an update. Curr Opin Clin Nutr Metab Care 14(6):554–561PubMedCrossRefGoogle Scholar
  28. Gorbacheva VY, Kondratov RV, Zhang R, Cherukuri S, Gudkov AV, Takahashi JS, Antoch MP (2005) Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proc Natl Acad Sci USA 102(9):3407–3412PubMedCrossRefGoogle Scholar
  29. Gotter AL (2003) Tipin, a novel timeless-interacting protein, is developmentally co-expressed with timeless and disrupts its self-association. J Mol Biol 331(1):167–176PubMedCrossRefGoogle Scholar
  30. Grechez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F (2008) The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J Biol Chem 283(8):4535–4542PubMedCrossRefGoogle Scholar
  31. Harada Y, Sakai M, Kurabayashi N, Hirota T, Fukada Y (2005) Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3 beta. J Biol Chem 280(36):31714–31721PubMedCrossRefGoogle Scholar
  32. Hirota T, Okano T, Kokame K, Shirotani-Ikejima H, Miyata T, Fukada Y (2002) Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J Biol Chem 277(46):44244–44251PubMedCrossRefGoogle Scholar
  33. Hirota T, Kon N, Itagaki T, Hoshina N, Okano T, Fukada Y (2007) Transcriptional repressor TIEG1 regulates Bmal1 gene through GC box and controls circadian clockwork. Genes Cells 15(2):111–121CrossRefGoogle Scholar
  34. Hirota T, Lewis WG, Liu AC, Lee JW, Schultz PG, Kay SA (2008) A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3beta. Proc Natl Acad Sci USA 105(52):20746–20751PubMedCrossRefGoogle Scholar
  35. Hirota T, Lee JW, Lewis WG, Zhang EE, Breton G, Liu X, Garcia M, Peters EC, Etchegaray JP, Traver D, Schultz PG, Kay SA (2010) High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIalpha as a clock regulatory kinase. PLoS Biol 8(12):e1000559PubMedCrossRefGoogle Scholar
  36. Hirota T, Lee JW, St John PC, Sawa M, Iwaisako K, Noguchi T, Pongsawakul PY, Sonntag T, Welsh DK, Brenner DA, Doyle FJ 3rd, Schultz PG, Kay SA (2012) Identification of small molecule activators of cryptochrome. Science 337(6098):1094–1097PubMedCrossRefGoogle Scholar
  37. Hoogerwerf WA (2006) Biologic clocks and the gut. Curr Gastroenterol Rep 8(5):353–359PubMedCrossRefGoogle Scholar
  38. Hu Y, Spengler ML, Kuropatwinski KK, Comas-Soberats M, Jackson M, Chernov MV, Gleiberman AS, Fedtsova N, Rustum YM, Gudkov AV, Antoch MP (2011) Selenium is a modulator of circadian clock that protects mice from the toxicity of a chemotherapeutic drug via upregulation of the core clock protein, BMAL1. Oncotarget 2(12):1279–1290PubMedGoogle Scholar
  39. Iitaka C, Miyazaki K, Akaike T, Ishida N (2005) A role for glycogen synthase kinase-3beta in the mammalian circadian clock. J Biol Chem 280(33):29397–29402PubMedCrossRefGoogle Scholar
  40. Innominato PF, Levi FA, Bjarnason GA (2010) Chronotherapy and the molecular clock: clinical implications in oncology. Adv Drug Deliv Rev 62(9–10):979–1001PubMedCrossRefGoogle Scholar
  41. Isojima Y, Nakajima M, Ukai H, Fujishima H, Yamada RG, Masumoto KH, Kiuchi R, Ishida M, Ukai-Tadenuma M, Minami Y, Kito R, Nakao K, Kishimoto W, Yoo SH, Shimomura K, Takao T, Takano A, Kojima T, Nagai K, Sakaki Y, Takahashi JS, Ueda HR (2009) CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc Natl Acad Sci USA 106(37):15744–15749PubMedCrossRefGoogle Scholar
  42. Izumo M, Sato TR, Straume M, Johnson CH (2006) Quantitative analyses of circadian gene expression in mammalian cell cultures. PLoS Comput Biol 2(10):e136PubMedCrossRefGoogle Scholar
  43. Kanai S, Kikuno R, Toh H, Ryo H, Todo T (1997) Molecular evolution of the photolyase-blue-light photoreceptor family. J Mol Evol 45(5):535–548PubMedCrossRefGoogle Scholar
  44. Kang TH, Sancar A (2009) Circadian regulation of DNA excision repair: implications for chrono-chemotherapy. Cell Cycle 8(11):1665–1667PubMedCrossRefGoogle Scholar
  45. Kang TH, Reardon JT, Kemp M, Sancar A (2009) Circadian oscillation of nucleotide excision repair in mammalian brain. Proc Natl Acad Sci USA 106(8):2864–2867PubMedCrossRefGoogle Scholar
  46. Kang TH, Lindsey-Boltz LA, Reardon JT, Sancar A (2010) Circadian control of XPA and excision repair of cisplatin-DNA damage by cryptochrome and HERC2 ubiquitin ligase. Proc Natl Acad Sci USA 107(11):4890–4895PubMedCrossRefGoogle Scholar
  47. Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7(8):573–584PubMedCrossRefGoogle Scholar
  48. Khapre RV, Samsa WE, Kondratov RV (2010) Circadian regulation of cell cycle: molecular connections between aging and the circadian clock. Ann Med 42(6):404–415PubMedCrossRefGoogle Scholar
  49. Khapre RV, Kondratova AA, Susova O, Kondratov RV (2011) Circadian clock protein BMAL1 regulates cellular senescence in vivo. Cell Cycle 10(23):4162–4169PubMedCrossRefGoogle Scholar
  50. King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, Takahashi JS (1997) Positional cloning of the mouse circadian clock gene. Cell 89(4):641–653PubMedCrossRefGoogle Scholar
  51. Kojima S, Shingle DL, Green CB (2011) Post-transcriptional control of circadian rhythms. J Cell Sci 124(Pt 3):311–320PubMedCrossRefGoogle Scholar
  52. Kondratov RV, Antoch MP (2007) Circadian proteins in the regulation of cell cycle and genotoxic stress responses. Trends Cell Biol 17(7):311–317PubMedCrossRefGoogle Scholar
  53. Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev 20(14):1868–1873PubMedCrossRefGoogle Scholar
  54. Kondratov RV, Gorbacheva VY, Antoch MP (2007) The role of mammalian circadian proteins in normal physiology and genotoxic stress responses. Curr Top Dev Biol 78:173–216PubMedCrossRefGoogle Scholar
  55. Kondratova AA, Dubrovsky YV, Antoch MP, Kondratov RV (2010) Circadian clock proteins control adaptation to novel environment and memory formation. Aging 2(5):285–297PubMedGoogle Scholar
  56. Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, Jonker JW, Downes M, Evans RM (2011) Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480(7378):552–556PubMedGoogle Scholar
  57. Lee JH, Sancar A (2011) Circadian clock disruption improves the efficacy of chemotherapy through p73-mediated apoptosis. Proc Natl Acad Sci USA 108(26):10668–10672PubMedCrossRefGoogle Scholar
  58. Levi F, Okyar A, Dulong S, Innominato PF, Clairambault J (2010) Circadian timing in cancer treatments. Annu Rev Pharmacol Toxicol 50:377–421PubMedCrossRefGoogle Scholar
  59. Lin KK, Kumar V, Geyfman M, Chudova D, Ihler AT, Smyth P, Paus R, Takahashi JS, Andersen B (2009) Circadian clock genes contribute to the regulation of hair follicle cycling. PLoS Genet 5(7):e1000573PubMedCrossRefGoogle Scholar
  60. Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE, Jacks T (1994) p53 status and the efficacy of cancer therapy in vivo. Science 266(5186):807–810PubMedCrossRefGoogle Scholar
  61. Lowrey PL, Takahashi JS, Stuart B (2011) Chap 6—Genetics of circadian rhythms in mammalian model organisms. In: Advances in genetics, vol 74. Academic, London, pp 175–230Google Scholar
  62. Mansilla S, Bataller M, Portugal J (2006) Mitotic catastrophe as a consequence of chemotherapy. Anticancer Agents Med Chem 6(6):589–602PubMedCrossRefGoogle Scholar
  63. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466(7306):627–631PubMedCrossRefGoogle Scholar
  64. McClung CA (2007) Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther 114(2):222–232PubMedCrossRefGoogle Scholar
  65. Mendez-Ferrer S, Chow A, Merad M, Frenette PS (2009) Circadian rhythms influence hematopoietic stem cells. Curr Opin Hematol 16(4):235–242PubMedCrossRefGoogle Scholar
  66. Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J, Andrews JL, Antoch MP, Walker JR, Esser KA, Hogenesch JB, Takahashi JS (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci USA 104(9):3342–3347PubMedCrossRefGoogle Scholar
  67. Minami Y, Ode KL, Ueda HR (2013) Mammalian circadian clock; the roles of transcriptional repression and delay. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, HeidelbergCrossRefGoogle Scholar
  68. Miyamoto N, Izumi H, Noguchi T, Nakajima Y, Ohmiya Y, Shiota M, Kidani A, Tawara A, Kohno K (2008) Tip60 is regulated by circadian transcription factor clock and is involved in cisplatin resistance. J Biol Chem 283(26):18218–18226PubMedCrossRefGoogle Scholar
  69. Muecke R, Schomburg L, Glatzel M, Berndt-Skorka R, Baaske D, Reichl B, Buentzel J, Kundt G, Prott FJ, Devries A, Stoll G, Kisters K, Bruns F, Schaefer U, Willich N, Micke O (2010) Multicenter, Phase 3 trial comparing selenium supplementation with observation in gynecologic radiation oncology. Int J Radiat Oncol Biol Phys 78:828–835PubMedCrossRefGoogle Scholar
  70. Mullenders J, Fabius AW, Madiredjo M, Bernards R, Beijersbergen RL (2009) A large scale shRNA barcode screen identifies the circadian clock component ARNTL as putative regulator of the p53 tumor suppressor pathway. PLoS One 4(3):e4798PubMedCrossRefGoogle Scholar
  71. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324(5927):654–657PubMedCrossRefGoogle Scholar
  72. O’Neill JS, Maywood ES, Hastings MH (2013) Cellular mechanisms of circadian pacemaking: beyond transcriptional loops. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, HeidelbergCrossRefGoogle Scholar
  73. O’Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH (2008) cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320(5878):949–953PubMedCrossRefGoogle Scholar
  74. Ortiz-Tudela E, Mteyrek A, Ballesta A, Innominato PF, Lévi F (2013) Cancer chronotherapeutics: experimental, theoretical and clinical aspects. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, HeidelbergCrossRefGoogle Scholar
  75. Ozturk N, Lee JH, Gaddameedhi S, Sancar A (2009) Loss of cryptochrome reduces cancer risk in p53 mutant mice. Proc Natl Acad Sci USA 106(8):2841–2846PubMedCrossRefGoogle Scholar
  76. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109(3):307–320PubMedCrossRefGoogle Scholar
  77. Paschos GK, FitzGerald GA (2010) Circadian clocks and vascular function. Circ Res 106(5):833–841PubMedCrossRefGoogle Scholar
  78. Ptacek LJ, Jones CR, Fu YH (2007) Novel insights from genetic and molecular characterization of the human clock. Cold Spring Harb Symp Quant Biol 72:273–277PubMedCrossRefGoogle Scholar
  79. Raghuram S, Stayrook KR, Huang P, Rogers PM, Nosie AK, McClure DB, Burris LL, Khorasanizadeh S, Burris TP, Rastinejad F (2007) Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat Struct Mol Biol 14(12):1207–1213PubMedCrossRefGoogle Scholar
  80. Rajendran R, Garva R, Krstic-Demonacos M, Demonacos C (2011) Sirtuins: molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription. J Biomed Biotechnol 2011:368276PubMedCrossRefGoogle Scholar
  81. Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, Takahashi JS, Imai S, Bass J (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324(5927):651–654PubMedCrossRefGoogle Scholar
  82. Rutter J, Reick M, McKnight SL (2002) Metabolism and the control of circadian rhythms. Annu Rev Biochem 71:307–331PubMedCrossRefGoogle Scholar
  83. Sack RL, Auckley D, Auger RR, Carskadon MA, Wright KP Jr, Vitiello MV, Zhdanova IV (2007) Circadian rhythm sleep disorders: Part I. Basic principles, shift work and jet lag disorders. Sleep 30(11):1460–1483PubMedGoogle Scholar
  84. Sahar S, Sassone-Corsi P (2013) The epigenetic language of circadian clocks. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, HeidelbergCrossRefGoogle Scholar
  85. Sahar S, Zocchi L, Kinoshita C, Borrelli E, Sassone-Corsi P (2010) Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS One 5(1):e8561PubMedCrossRefGoogle Scholar
  86. Salhab M, Mokbel K (2006) Breast cancer risk in flight attendants: an update. Int J Fertil Womens Med 51(5):205–207PubMedGoogle Scholar
  87. Sancar A, Lindsey-Boltz LA, Kang TH, Reardon JT, Lee JH, Ozturk N (2010) Circadian clock control of the cellular response to DNA damage. FEBS Lett 584(12):2618–2625PubMedCrossRefGoogle Scholar
  88. Schrem H, Klempnauer J, Borlak J (2004) Liver-enriched transcription factors in liver function and development. Part II: The C/EBPs and D site-binding protein in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. Pharmacol Rev 56(2):291–330PubMedCrossRefGoogle Scholar
  89. Smith J, Tho LM, Xu N, Gillespie DA (2010) The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108:73–112PubMedCrossRefGoogle Scholar
  90. Spengler ML, Kuropatwinski KK, Schumer M, Antoch MP (2009) A serine cluster mediates BMAL1-dependent CLOCK phosphorylation and degradation. Cell Cycle 8(24):4138–4146PubMedCrossRefGoogle Scholar
  91. Stiewe T (2007) The p53 family in differentiation and tumorigenesis. Nat Rev Cancer 7(3):165–168PubMedCrossRefGoogle Scholar
  92. Sun Y, Yang Z, Niu Z, Peng J, Li Q, Xiong W, Langnas AN, Ma MY, Zhao Y (2006) MOP3, a component of the molecular clock, regulates the development of B cells. Immunology 119(4):451–460PubMedCrossRefGoogle Scholar
  93. Sun Y, Jiang X, Price BD (2010) Tip60: connecting chromatin to DNA damage signaling. Cell Cycle 9(5):930–936PubMedCrossRefGoogle Scholar
  94. Szosland D (2010) Shift work and metabolic syndrome, diabetes mellitus and ischaemic heart disease. Int J Occup Med Environ Health 23(3):287–291PubMedCrossRefGoogle Scholar
  95. Takahashi JS, Hong HK, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9(10):764–775PubMedCrossRefGoogle Scholar
  96. Taniguchi H, Fernandez AF, Setien F, Ropero S, Ballestar E, Villanueva A, Yamamoto H, Imai K, Shinomura Y, Esteller M (2009) Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res 69(21):8447–8454PubMedCrossRefGoogle Scholar
  97. Tsuchiya Y, Minami I, Kadotani H, Nishida E (2005) Resetting of peripheral circadian clock by prostaglandin E2. EMBO Rep 6(3):256–261PubMedCrossRefGoogle Scholar
  98. Unsal-Kacmaz K, Mullen TE, Kaufmann WK, Sancar A (2005) Coupling of human circadian and cell cycles by the timeless protein. Mol Cell Biol 25(8):3109–3116PubMedCrossRefGoogle Scholar
  99. Vanselow K, Vanselow JT, Westermark PO, Reischl S, Maier B, Korte T, Herrmann A, Herzel H, Schlosser A, Kramer A (2006) Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev 20(19):2660–2672PubMedCrossRefGoogle Scholar
  100. Vitaterna MH, Ko CH, Chang AM, Buhr ED, Fruechte EM, Schook A, Antoch MP, Turek FW, Takahashi JS (2006) The mouse Clock mutation reduces circadian pacemaker amplitude and enhances efficacy of resetting stimuli and phase-response curve amplitude. Proc Natl Acad Sci USA 103(24):9327–9332PubMedCrossRefGoogle Scholar
  101. Wang CY, Wen MS, Wang HW, Hsieh IC, Li Y, Liu PY, Lin FC, Liao JK (2008) Increased vascular senescence and impaired endothelial progenitor cell function mediated by mutation of circadian gene Per2. Circulation 118(21):2166–2173PubMedCrossRefGoogle Scholar
  102. Wang XS, Armstrong ME, Cairns BJ, Key TJ, Travis RC (2011) Shift work and chronic disease: the epidemiological evidence. Occup Med 61(2):78–89CrossRefGoogle Scholar
  103. Yagita K, Okamura H (2000) Forskolin induces circadian gene expression of rPer1, rPer2 and dbp in mammalian rat-1 fibroblasts. FEBS Lett 465(1):79–82PubMedCrossRefGoogle Scholar
  104. Yagita K, Tamanini F, van Der Horst GT, Okamura H (2001) Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292(5515):278–281PubMedCrossRefGoogle Scholar
  105. Yagita K, Yamanaka I, Koinuma S, Shigeyoshi Y, Uchiyama Y (2009) Mini screening of kinase inhibitors affecting period-length of mammalian cellular circadian clock. Acta Histochem Cytochem 42(3):89–93PubMedCrossRefGoogle Scholar
  106. Yin L, Wang J, Klein PS, Lazar MA (2006) Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science 311(5763):1002–1005PubMedCrossRefGoogle Scholar
  107. Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR, Reid RA, Waitt GM, Parks DJ, Pearce KH, Wisely GB, Lazar MA (2007) Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways. Science 318(5857):1786–1789PubMedCrossRefGoogle Scholar
  108. Yu EA, Weaver DR (2011) Disrupting the circadian clock: gene-specific effects on aging, cancer, and other phenotypes. Aging 3(5):479–493PubMedGoogle Scholar
  109. Yu J, Baron V, Mercola D, Mustelin T, Adamson ED (2007) A network of p73, p53 and Egr1 is required for efficient apoptosis in tumor cells. Cell Death Differ 14(3):436–446PubMedCrossRefGoogle Scholar
  110. Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T, Nusinow DA, Sun X, Landais S, Kodama Y, Brenner DA, Montminy M, Kay SA (2010) Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16(10):1152–1156PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Cellular and Molecular BiologyRoswell Park Cancer InstituteBuffaloUSA
  2. 2.Department of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandUSA

Personalised recommendations