Skip to main content

Cancer Chronotherapeutics: Experimental, Theoretical, and Clinical Aspects

  • Chapter
  • First Online:
Circadian Clocks

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 217))

Abstract

The circadian timing system controls cell cycle, apoptosis, drug bioactivation, and transport and detoxification mechanisms in healthy tissues. As a consequence, the tolerability of cancer chemotherapy varies up to several folds as a function of circadian timing of drug administration in experimental models. Best antitumor efficacy of single-agent or combination chemotherapy usually corresponds to the delivery of anticancer drugs near their respective times of best tolerability. Mathematical models reveal that such coincidence between chronotolerance and chronoefficacy is best explained by differences in the circadian and cell cycle dynamics of host and cancer cells, especially with regard circadian entrainment and cell cycle variability. In the clinic, a large improvement in tolerability was shown in international randomized trials where cancer patients received the same sinusoidal chronotherapy schedule over 24h as compared to constant-rate infusion or wrongly timed chronotherapy. However, sex, genetic background, and lifestyle were found to influence optimal chronotherapy scheduling. These findings support systems biology approaches to cancer chronotherapeutics. They involve the systematic experimental mapping and modeling of chronopharmacology pathways in synchronized cell cultures and their adjustment to mouse models of both sexes and distinct genetic background, as recently shown for irinotecan. Model-based personalized circadian drug delivery aims at jointly improving tolerability and efficacy of anticancer drugs based on the circadian timing system of individual patients, using dedicated circadian biomarker and drug delivery technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abercrombie HC, Giese-Davis J, Sephton S et al (2004) Flattened cortisol rhythms in metastatic breast cancer patients. Psychoneuroendocrinology 29(8):1082–92

    Article  PubMed  CAS  Google Scholar 

  • Adan A, Natale V (2002) Gender differences in morningness–eveningness preference. Chronobiol Int 19(4):709–20

    Article  PubMed  Google Scholar 

  • Ahowesso C, Piccolo E, Li XM et al (2010) Relations between strain and gender dependencies of irinotecan toxicity and UGT1A1, CES2 and TOP1 expressions in mice. Toxicol Lett 192(3):395–401

    Article  PubMed  CAS  Google Scholar 

  • Ahowesso C, Li XM, Zampera S et al (2011) Sex and dosing-time dependencies in irinotecan-induced circadian disruption. Chronobiol Int 28(5):458–70

    Article  PubMed  CAS  Google Scholar 

  • Altinok A, Levi F, Goldbeter A (2007) A cell cycle automaton model for probing circadian patterns of anticancer drug delivery. Adv Drug Deliv Rev 59:1036–53

    Article  PubMed  CAS  Google Scholar 

  • Ancoli-Israel S, Moore PJ, Jones V (2001) The relationship between fatigue and sleep in cancer patients: a review. Eur J Cancer Care 10(4):245–55

    Article  CAS  Google Scholar 

  • Ancoli-Israel S, Cole R, Alessi C (2003) The role of actigraphy in the study of sleep and circadian rhythms. Sleep 26(3):342–92

    PubMed  Google Scholar 

  • Ancoli-Israel S, Rissling M, Neikrug A et al (2011) Light treatment prevents fatigue in women undergoing chemotherapy for breast cancer. Support Care Cancer 20(6):1211–9

    Article  PubMed  Google Scholar 

  • Antoch MP, Kondratov RV (2013) Pharmacological modulators of the circadian clock as potential therapeutic drugs: Focus on genotoxic/anticancer therapy. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, Heidelberg

    Chapter  Google Scholar 

  • Ballesta A, Dulong S, Abbara C et al (2011) A combined experimental and mathematical approach for molecular-based optimization of irinotecan circadian delivery. PLoS Comput Biol 7(9):e1002143

    Article  PubMed  CAS  Google Scholar 

  • Barsevick A, Frost M, Zwinderman A et al (2010) I’m so tired: biological and genetic mechanisms of cancer-related fatigue. Qual Life Res 19(10):1419–27

    Article  PubMed  Google Scholar 

  • Basdevant C, Clairambault J, Levi F (2005) Optimisation of time-scheduled regimen for anti-cancer drug infusion. ESAIM Math Model Numer Anal 39(6):1069–1086

    Article  Google Scholar 

  • Beau J, Innominato PF, Carnino S, Lévi F (2009) An implanted device for the adjustment of cancer chronotherapeutics to the patient’s circadian timing system. In: XI Congress of the European Biological Rhythms Society, Strasbourg, France, 22–28 Aug 2009

    Google Scholar 

  • Berger AM, Farr LA, Kuhn BR et al (2007) Values of sleep/wake, activity/rest, circadian rhythms, and fatigue prior to adjuvant breast cancer chemotherapy. J Pain Symptom Manage 33(4):398–409

    Article  PubMed  Google Scholar 

  • Berger AM, Grem JL, Visovsky C et al (2010) Fatigue and other variables during adjuvant chemotherapy for colon and rectal cancer. Oncol Nurs Forum 37(6):E359–69

    Article  PubMed  Google Scholar 

  • Bernard S, Cajavec Bernard B et al (2010) Tumour growth rate determines the timing of optimal chronomodulated treatment schedules. PLoS Comput Biol 3:1000712

    Article  CAS  Google Scholar 

  • Billy F, Clairambault J, Fercoq O (2012) Optimisation of cancer drug treatments using cell population dynamics. In: Friedman A, Kashdan E, Ledzewicz U, Schättler H (eds) Mathematical methods and models in biomedicine. Springer, New York, pp 257–299

    Google Scholar 

  • Bjarnason GA, Jordan RC, Wood PA et al (2001) Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases. Am J Pathol 158(5):1793–801

    Article  PubMed  CAS  Google Scholar 

  • Bjarnason GA, Mackenzie RG, Nabid A et al (2009) Comparison of toxicity associated with early morning versus late afternoon radiotherapy in patients with head-and-neck cancer: a prospective randomized trial of the National Cancer Institute of Canada Clinical Trials Group (HN3). Int J Radiat Oncol Biol Phys 73(1):166–72

    Article  PubMed  Google Scholar 

  • Bordyugov G, Westermark PO, Korencic A, Bernard S, Herzel H (2013) Mathematical modeling in chronobiology. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, Heidelberg

    Chapter  Google Scholar 

  • Bouchahda M, Adam R, Giacchetti S et al (2009) Rescue chemotherapy using multidrug chronomodulated hepatic arterial infusion for patients with heavily pretreated metastatic colorectal cancer. Cancer 115(21):4990–9

    Article  PubMed  CAS  Google Scholar 

  • Bouchahda M, Lévi F, Adam R et al (2011) Modern insights into hepatic arterial infusion for liver metastases from colorectal cancer. Eur J Cancer 47(18):2681–90

    Article  PubMed  CAS  Google Scholar 

  • Boughattas NA, Lévi F, Fournier C et al (1989) Circadian rhythm in toxicities and tissue uptake of 1,2-diamminocyclohexane(trans-1)oxalatoplatinum(II) in mice. Cancer Res 49(12):3362–8

    PubMed  CAS  Google Scholar 

  • Buhr ED, Takahashi JS (2013) Molecular components of the mammalian circadian clock. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, Heidelberg

    Chapter  Google Scholar 

  • Buhr ED, Yoo SH, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330(6002):379–85

    Article  PubMed  CAS  Google Scholar 

  • Calogiuri G, Weydahl A, Carandente F (2011) Methodological issues for studying the rest-activity cycle and sleep disturbances: a chronobiological approach using actigraphy data. Biol Res Nurs 15(1):5–12

    Article  PubMed  Google Scholar 

  • Calzone L, Soliman S (2006) Coupling the cell cycle and the circadian cycle. INRIA internal research report #5835. INRIA, Rocquencourt

    Google Scholar 

  • Caussanel JP, Lévi F, Brienza S et al (1990) Phase I trial of 5-day continuous venous infusion of oxaliplatin at circadian rhythm-modulated rate compared with constant rate. J Natl Cancer Inst 82(12):1046–50

    Article  PubMed  CAS  Google Scholar 

  • Cermakian N, Boivin DB (2003) A molecular perspective of human circadian rhythm disorders. Brain Res Brain Res Rev 42:204–20

    Article  PubMed  CAS  Google Scholar 

  • Chen ST, Choo KB, Hou MF et al (2005) Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis 26(7):1241–6

    Article  PubMed  CAS  Google Scholar 

  • Chu LW, Zhu Y, Yu K et al (2008) Variants in circadian genes and prostate cancer risk: a population-based study in China. Prostate Cancer Prostatic Dis 4:342–8

    Article  CAS  Google Scholar 

  • Clairambault J (2007) Modeling oxaliplatin drug delivery to circadian rhythms in drug metabolism and host tolerance. Adv Drug Deliv Rev 59(9–10):1054–68

    Article  PubMed  CAS  Google Scholar 

  • Clow A, Hucklebridge F, Thorn L (2010) The cortisol awakening response in context. Int Rev Neurobiol 93:153–75

    Article  PubMed  Google Scholar 

  • Costa MJ, Finkenstädt BF, Gould PD et al (2013) Inference on periodicity of circadian time series. Biostatistics (in press)

    Google Scholar 

  • de Gramont A, Vignoud J, Tournigand C et al (1997) Oxaliplatin with high-dose leucovorin and 5-fluorouracil 48-hour continuous infusion in pretreated metastatic colorectal cancer. Eur J Cancer 33(2):214–9

    Article  PubMed  Google Scholar 

  • de Maria E, Fages F, Soliman S (2009) INRIA research report, 7064. INRIA, Rocquencourt

    Google Scholar 

  • Duffy JF, Dijk DJ, Hall EF et al (1999) Relationship of endogenous circadian melatonin and temperature rhythms to self-reported preference for morning or evening activity in young and older people. J Invest Med 47:141–50

    CAS  Google Scholar 

  • Duffy JF, Cain SW, Chang AM et al (2011) Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci USA 108(Suppl 3):15602–8

    Article  PubMed  CAS  Google Scholar 

  • Eisele L, Prinz R, Klein-Hitpass L et al (2009) Combined PER2 and CRY1 expression predicts outcome in chronic lymphocytic leukemia. Eur J Haematol 83(4):320–7

    Article  PubMed  CAS  Google Scholar 

  • Etienne-Grimaldi MC, Cardot JM, François E et al (2008) Chronopharmacokinetics of oral tegafur and uracil in colorectal cancer patients. Clin Pharmacol Ther 83(3):413–5

    Article  PubMed  CAS  Google Scholar 

  • Filipski E, King VM, Li X et al (2002) Host circadian clock as a control point in tumor progression. J Natl Cancer Inst 94(9):690–7

    Article  PubMed  Google Scholar 

  • Filipski E, Delaunay F, King VM et al (2004) Effects of chronic jet lag on tumor progression in mice. Cancer Res 64(21):7879–85

    Article  PubMed  CAS  Google Scholar 

  • Filipski E, Innominato PF, Wu M et al (2005) Effects of light and food schedules on liver and tumor molecular clocks in mice. J Natl Cancer Inst 97(7):507–17

    Article  PubMed  CAS  Google Scholar 

  • Filipski E, Li XM, Lévi F (2006) Disruption of circadian coordination and malignant growth. Cancer Causes Control 17(4):509–14

    Article  PubMed  Google Scholar 

  • Focan C, Denis B, Kreutz F et al (1995) Ambulatory chronotherapy with 5-fluorouracil, folinic acid, and carboplatin for advanced non-small cell lung cancer. A phase II feasibility trial. J Infus Chemother 5(3 Suppl 1):148–52

    PubMed  CAS  Google Scholar 

  • Foley C, Mackey MC (2009) Dynamic hematological disease: a review. J Math Biol 58(1–2):285–322

    Article  PubMed  Google Scholar 

  • Forger DB, Dean DA 2nd, Gurdziel K et al (2003) Development and validation of computational models for mammalian circadian oscillators. OMICS 4:387–400

    Article  CAS  Google Scholar 

  • Fu L, Lee CC (2003) The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 3(5):350–61

    Article  PubMed  CAS  Google Scholar 

  • Fu L, Pelicano H, Liu J et al (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111(1):41–50

    Article  PubMed  CAS  Google Scholar 

  • Gérard C, Goldbeter A (2009) Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle. Proc Natl Acad Sci USA 106(51):21643–8

    Article  PubMed  Google Scholar 

  • Gery S, Gombart AF, Yi WS et al (2005) Transcription profiling of C/EBP targets identifies Per2 as a gene implicated in myeloid leukemia. Blood 106(8):2827–36

    Article  PubMed  CAS  Google Scholar 

  • Gery S, Komatsu N, Baldjyan L et al (2006) The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 22(3):375–82

    Article  PubMed  CAS  Google Scholar 

  • Giacchetti S, Bjarnason G, Garufi C et al (2006) European Organisation for Research and Treatment of Cancer Chronotherapy Group. Phase III trial comparing 4-day chronomodulated therapy versus 2-day conventional delivery of fluorouracil, leucovorin, and oxaliplatin as first-line chemotherapy of metastatic colorectal cancer: the European Organisation for Research and Treatment of Cancer Chronotherapy Group. J Clin Oncol 24(22):3562–9

    Article  PubMed  CAS  Google Scholar 

  • Giacchetti S, Dugué PA, Innominato PF et al (2012) Sex moderates circadian chemotherapy effects on survival of patients with metastatic colorectal cancer: a meta-analysis. Ann Oncol 23(12):3110–3116

    Article  PubMed  CAS  Google Scholar 

  • Goodwin BC (1965) Oscillatory behavior in enzymatic control processes. In: Weber G (ed) Advances in enzyme regulation, vol 3. Pergamon, Oxford, pp 425–438

    Google Scholar 

  • Gorbacheva VY, Kondratov RV, Zhang R et al (2005) Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proc Natl Acad Sci USA 102(9):3407–12

    Article  PubMed  CAS  Google Scholar 

  • Granda TG, Liu XH, Smaaland R et al (2005) Circadian regulation of cell cycle and apoptosis proteins in mouse bone marrow and tumor. FASEB J 19(2):304–6

    PubMed  CAS  Google Scholar 

  • Grutsch JF, Wood PA, Du-Quiton J et al (2011) Validation of actigraphy to assess circadian organization and sleep quality in patients with advanced lung cancer. J Circadian Rhythms 9:4

    Article  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–74

    Article  PubMed  CAS  Google Scholar 

  • Hardeland R, Madrid JA, Tan DX et al (2011) Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res. doi:10.1111/j.1600-079X.2011.00934.x

  • Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4(8):649–61

    Article  PubMed  CAS  Google Scholar 

  • Haus E (2002) Chronobiology of the mammalian response to ionizing radiation. Potential applications in oncology. Chronobiol Int 19(1):77–100

    Article  PubMed  Google Scholar 

  • Hoffman AE, Zheng T, Stevens RG et al (2009) Clock-cancer connection in non-Hodgkin’s lymphoma: a genetic association study and pathway analysis of the circadian gene cryptochrome 2. Cancer Res 69(8):3605–13

    Article  PubMed  CAS  Google Scholar 

  • Hrushesky WJ (1985) Circadian timing of cancer chemotherapy. Science 228(4695):73–5

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Ramsey KM, Marcheva B et al (2011) Circadian rhythms, sleep, and metabolism. J Clin Invest 121(6):2133–41

    Article  PubMed  CAS  Google Scholar 

  • Hunt T, Sassone-Corsi P et al (2007) Riding tandem: circadian clocks and the cell cycle. Cell 129(3):461–4

    Article  PubMed  CAS  Google Scholar 

  • Iacobelli S, Innominato PF, Piantelli M et al (2008) Tumor clock protein PER2 as a determinant of survival in patients receiving oxaliplatin-5-FU-leucovirin as first-line chemotherapy for metastatic colorectal cancer. In: 44th Annual meeting of the American Society of Clinical Oncology, Chicago, IL, USA

    Google Scholar 

  • Innominato PF, Focan C, Gorlia T et al (2009) Chronotherapy Group of the European Organization for Research and Treatment of Cancer. Circadian rhythm in rest and activity: a biological correlate of quality of life and a predictor of survival in patients with metastatic colorectal cancer. Cancer Res 69(11):4700–7

    Article  PubMed  CAS  Google Scholar 

  • Innominato PF, Lévi FA, Bjarnason GA (2010) Chronotherapy and the molecular clock: clinical implications in oncology. Adv Drug Deliv Rev 62(9–10):979–1001

    Article  PubMed  CAS  Google Scholar 

  • Innominato PF, Giacchetti S, Moreau T et al (2011) Prediction of survival by neutropenia according to delivery schedule of oxaliplatin-5-Fluorouracil-leucovorin for metastatic colorectal cancer in a randomized international trial (EORTC 05963). Chronobiol Int 7:586–600

    Article  CAS  Google Scholar 

  • Innominato PF, Giacchetti S, Bjarnason GA et al (2012) Prediction of overall survival through circadian rest-activity monitoring during chemotherapy for metastatic colorectal cancer. Int J Cancer Apr 5. doi:10.1002/ijc.27574

  • Kalsbeek A, Fliers E (2013) Daily regulation of hormone profiles. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, Heidelberg

    Chapter  Google Scholar 

  • Kang B, Li YY, Chang X et al (2008) Modeling the effects of cell cycle M-phase transcriptional inhibition on circadian oscillation. PLoS Comput Biol. doi:10.1371/journal.pcbi.1000019

  • Kang TH, Lindsey-Boltz LA, Reardon JT et al (2010) Circadian control of XPA and excision repair of cisplatin-DNA damage by cryptochrome and HERC2 ubiquitin ligase. Proc Natl Acad Sci USA 107(11):4890–5

    Article  PubMed  CAS  Google Scholar 

  • Kerkhof GA, Van Dongen HP (1996) Morning-type and evening-type individuals differ in the phase position of their endogenous circadian oscillator. Neurosci Lett 218:153–6

    Article  PubMed  CAS  Google Scholar 

  • Khapre RV, Samsa WE, Kondratov RV (2010) Circadian regulation of cell cycle: molecular connections between aging and the circadian clock. Ann Med 42(6):404–15

    Article  PubMed  CAS  Google Scholar 

  • Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15(suppl 2):R271–7

    Article  PubMed  CAS  Google Scholar 

  • Koyanagi S, Kuramoto Y, Nakagawa H (2003) A molecular mechanism regulating circadian expression of vascular endothelial growth factor in tumor cells. Cancer Res 63(21):7277–83

    PubMed  CAS  Google Scholar 

  • Kräuchi K (2002) How is the circadian rhythm of core body temperature regulated? Clin Auton Res 12(3):147–9

    Article  PubMed  Google Scholar 

  • Lee JH, Sancar A (2011) Circadian clock disruption improves the efficacy of chemotherapy through p73-mediated apoptosis. Proc Natl Acad Sci USA 108(26):10668–72

    Article  PubMed  CAS  Google Scholar 

  • Leloup JC, Goldbeter A (2003) Toward a detailed computational model for the mammalian circadian clock. Proc Natl Acad Sci USA 100(12):7051–6

    Article  PubMed  CAS  Google Scholar 

  • Leloup JC, Gonze D, Goldbeter A (1999) Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora. J Biol Rhythms 6:433–448

    Article  Google Scholar 

  • Levi F (2012) Circadian robustness as an independent predictor of prolonged progression-free survival (PFS) and overall survival (OS) in 436 patients with metastatic colorectal cancer (mCRC). In: Abstract 2012 Gastrointestinal cancers symposium – Category: Cancers of the colon and rectum – Translational research, San Francisco, CA, USA, 19–21 Jan 2012

    Google Scholar 

  • Lévi F, Okyar A (2011) Circadian clocks and drug delivery systems: impact and opportunities in chronotherapeutics. Expert Opin Drug Deliv 8(12):1535–41

    Article  PubMed  CAS  Google Scholar 

  • Lévi F, Schibler U (2007) Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol 47:593–628

    Article  PubMed  CAS  Google Scholar 

  • Lévi F, Altinok A, Clairambault J et al (2008) Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Philos Trans A Math Phys Eng Sci 366:3575–98

    Article  Google Scholar 

  • Lévi F, Benavides M, Chevelle C et al (1990) Chemotherapy of advanced ovarian cancer with 4′-O-tetrahydropyranyl doxorubicin and cisplatin: a randomized phase II trial with an evaluation of circadian timing and dose-intensity. J Clin Oncol 8(4):705–14

    PubMed  Google Scholar 

  • Lévi F, Misset JL, Brienza S et al (1992) A chronopharmacologic phase II clinical trial with 5-fluorouracil, folinic acid, and oxaliplatin using an ambulatory multichannel programmable pump. High antitumor effectiveness against metastatic colorectal cancer. Cancer 69(4):893–900

    Article  PubMed  Google Scholar 

  • Lévi F, Perpoint B, Garufi C et al (1993) Oxaliplatin activity against metastatic colorectal cancer. A phase II study of 5-day continuous venous infusion at circadian rhythm modulated rate. Eur J Cancer 29A(9):1280–4

    Article  PubMed  Google Scholar 

  • Lévi FA, Zidani R, Vannetzel JM et al (1994) Chronomodulated versus fixed-infusion-rate delivery of ambulatory chemotherapy with oxaliplatin, fluorouracil, and folinic acid (leucovorin) in patients with colorectal cancer metastases: a randomized multi-institutional trial. J Natl Cancer Inst 86(21):1608–17

    Article  PubMed  Google Scholar 

  • Lévi F, Zidani R, Misset JL (1997) Randomised multicentre trial of chronotherapy with oxaliplatin, fluorouracil, and folinic acid in metastatic colorectal cancer. International Organization for Cancer Chronotherapy. Lancet 350(9079):681–6

    Article  PubMed  Google Scholar 

  • Lévi F, Filipski E, Iurisci I et al (2007a) Cross-talks between circadian timing system and cell division cycle determine cancer biology and therapeutics. Cold Spring Harb Symp Quant Biol 72:465–75

    Article  PubMed  Google Scholar 

  • Lévi F, Focan C, Karaboué A et al (2007b) Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Adv Drug Deliv Rev 59(9–10):1015–35

    Article  PubMed  CAS  Google Scholar 

  • Lévi F, Okyar A, Dulong S et al (2010) Circadian timing in cancer treatments. Annu Rev Pharmacol Toxicol 50:377–421

    Article  PubMed  CAS  Google Scholar 

  • Li XM, Vincenti M, Lévi F (2002) Pharmacological effects of vinorelbine on body temperature and locomotor activity circadian rhythms in mice. Chronobiol Int 19(1):43–55

    Article  PubMed  Google Scholar 

  • Li XM, Delaunay F, Dulong S et al (2010) Cancer inhibition through circadian reprogramming of tumor transcriptome with meal timing. Cancer Res 70(8):3351–60

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Dutertre-Catella H, Radionoff M et al (2003) Effect of age and photoperiodic conditions on metabolism and oxidative stress related markers at different circadian stages in rat liver and kidney. Life Sci 73(3):327–35

    Article  PubMed  CAS  Google Scholar 

  • Mazzoccoli G, Panza A, Valvano MR et al (2011) Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients. Chronobiol Int 28(10):841–51

    Article  PubMed  CAS  Google Scholar 

  • Merrow M, Dragovic Z, Tan Y et al (2003) Combining theoretical and experimental approaches to understand the circadian clock. Chronobiol Int 20(4):559–575

    Article  PubMed  Google Scholar 

  • Miyamoto N, Izumi H, Noguchi T et al (2008) Tip60 is regulated by circadian transcription factor clock and is involved in cisplatin resistance. J Biol Chem 283(26):18218–26

    Article  PubMed  CAS  Google Scholar 

  • Mormont MC, Lévi F (1997) Circadian-system alterations during cancer processes: a review. Int J Cancer 70(2):241–7

    Article  PubMed  CAS  Google Scholar 

  • Mormont MC, Hecquet B, Bogdan A et al (1998) Non-invasive estimation of the circadian rhythm in serum cortisol in patients with ovarian or colorectal cancer. Int J Cancer 78(4):421–4

    Article  PubMed  CAS  Google Scholar 

  • Mormont MC, Waterhouse J, Bleuzen P et al (2000) Marked 24-h rest/activity rhythms are associated with better quality of life, better response, and longer survival in patients with metastatic colorectal cancer and good performance status. Clin Cancer Res 6(8):3038–45

    PubMed  CAS  Google Scholar 

  • Mormont MC, Langouët AM, Claustrat B et al (2002) Marker rhythms of circadian system function: a study of patients with metastatic colorectal cancer and good performance status. Chronobiol Int 19(1):141–55

    Article  PubMed  Google Scholar 

  • Murakami Y, Higashi Y, Matsunaga N (2008) Circadian clock - controlled intestinal expression of the multidrug-resistance gene mdr1a in mice. Gastroenterology 135:1636–1644

    Article  PubMed  CAS  Google Scholar 

  • O’Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature 469(7331):498–503

    Article  PubMed  CAS  Google Scholar 

  • O’Neill JS, van Ooijen G, Dixon LE et al (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469(7331):554–8

    Article  PubMed  CAS  Google Scholar 

  • O’Neill JS, Maywood ES, Hastings MH (2013) Cellular mechanisms of circadian pacemaking: beyond transcriptional loops. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, Heidelberg

    Chapter  Google Scholar 

  • Oklejewicz M, Destici E, Tamanini F et al (2008) Phase resetting of the mammalian circadian clock by DNA damage. Curr Biol 18(4):286–91

    Article  PubMed  CAS  Google Scholar 

  • Okyar A, Piccolo E, Ahowesso C et al (2011) Strain- and sex-dependent circadian changes in abcc2 transporter expression: implications for irinotecan chronotolerance in mouse ileum. PLoS One 6(6):e20393

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Tudela E, Martinez-Nicolas A, Campos M (2010) A new integrated variable based on thermometry, actimetry and body position (TAP) to evaluate circadian system status in humans. PLoS Comput Biol 6(11):e1000996

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Tudela E, Innominato PF, Iurisci I et al (2011) Chemotherapy-induced disruption of circadian system in cancer patients. In: XII Congress of the European Biological Rhythms Society, Oxford, UK, 20–26 Aug 2011

    Google Scholar 

  • Oshima T, Takenoshita S, Akaike M et al (2011) Expression of circadian genes correlates with liver metastasis and outcomes in colorectal cancer. Oncol Rep 25(5):1439–46. doi:10.3892/or.2011.1207

    Article  PubMed  CAS  Google Scholar 

  • Otálora BB, Madrid JA, Alvarez N et al (2008) Effects of exogenous melatonin and circadian synchronization on tumor progression in melanoma-bearing C57BL6 mice. J Pineal Res 44(3):307–15

    Article  PubMed  CAS  Google Scholar 

  • Paine SJ, Gander PH, Travier (2006) The epidemiology of morningness/eveningness: influence of age, gender, ethnicity, and socioeconomic factors in adults (30–49 years). J Biol Rhythms 21(1):68–76

    Article  PubMed  Google Scholar 

  • Panda S, Hogenesch JB, Kay SA (2002) Circadian rhythms from flies to human. Nature 417(6886):329–35

    Article  PubMed  CAS  Google Scholar 

  • Qvortrup C, Jensen BV, Fokstuen T et al (2010) A randomized study comparing short-time infusion of oxaliplatin in combination with capecitabine XELOX(30) and chronomodulated XELOX(30) as first-line therapy in patients with advanced colorectal cancer. Ann Oncol 21(1):87–91

    Article  PubMed  CAS  Google Scholar 

  • Rahn DA 3rd, Ray DK, Schlesinger DJ et al (2011) Gamma knife radiosurgery for brain metastasis of nonsmall cell lung cancer: is there a difference in outcome between morning and afternoon treatment? Cancer 117(2):414–20

    Article  PubMed  Google Scholar 

  • Relógio A, Westermark PO, Wallach T et al (2011) Tuning the mammalian circadian clock: robust synergy of two loops. PLoS Comput Biol 7(12):e1002309

    Article  PubMed  CAS  Google Scholar 

  • Rivard GE, Infante-Rivard C, Dresse MF et al (1993) Circadian time-dependent response of childhood lymphoblastic leukemia to chemotherapy: a long-term follow-up study of survival. Chronobiol Int 10(3):201–4

    Article  PubMed  CAS  Google Scholar 

  • Roenneberg T, Kuehnle T, Pramstaller PP et al (2004) A marker for the end of adolescence. Curr Biol 14(24):R1038–9

    Article  PubMed  CAS  Google Scholar 

  • Roenneberg T, Kuehnle T, Juda M et al (2007a) Epidemiology of the human circadian clock. Sleep Med Rev 11(6):429–38

    Article  PubMed  Google Scholar 

  • Roenneberg T, Kumar CJ, Merrow M (2007b) The human circadian clock entrains to sun time. Curr Biol 17(2):R44–5

    Article  PubMed  CAS  Google Scholar 

  • Roenneberg T, Kantermann T, Juda M, Vetter C, Allebrandt KV (2013) Light and the human circadian clock. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, Heidelberg

    Chapter  Google Scholar 

  • Sarabia JA, Rol MA, Mendiola P et al (2008) Circadian rhythm of wrist temperature in normal-living subjects. A candidate of new index of the circadian system. Physiol Behav 95(4):570–80

    Article  PubMed  CAS  Google Scholar 

  • Savard J, Liu L, Natarajan L et al (2009) Breast cancer patients have progressively impaired sleep-wake activity rhythms during chemotherapy. Sleep 32(9):1155–60

    PubMed  Google Scholar 

  • Scully CG, Karaboué A, Liu WM et al (2011) Skin surface temperature rhythms as potential circadian biomarkers for personalized chronotherapeutics in cancer patients. Interface Focus 1:48–60

    Article  PubMed  Google Scholar 

  • Seely D, Wu P, Fritz H et al (2011) Melatonin as adjuvant cancer care with and without chemotherapy: a systematic review and meta-analysis of randomized trials. Integr Cancer Ther 11(4):293–303

    Article  PubMed  CAS  Google Scholar 

  • Sephton SE, Sapolsky RM, Kraemer HC et al (2000) Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst 92(12):994–1000

    Article  PubMed  CAS  Google Scholar 

  • Smaaland R, Sothern RB, Laerum OD et al (2002) Rhythms in human bone marrow and blood cells. Chronobiol Int 19(1):101–27

    Article  PubMed  CAS  Google Scholar 

  • Spies CM, Cutolo M, Straub RH et al (2011) Prednisone chronotherapy. Clin Exp Rheumatol 29(5 Suppl 68):S42–5

    PubMed  CAS  Google Scholar 

  • Storch KF, Lipan O, Leykin I et al (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417(6884):78–83

    Article  PubMed  CAS  Google Scholar 

  • Tampellini M, Filipski E, Liu XH et al (1998) Docetaxel chronopharmacology in mice. Cancer Res 58(17):3896–904

    PubMed  CAS  Google Scholar 

  • Tokunaga H, Takebayashi Y, Utsunomiya H et al (2008) Clinicopathological significance of circadian rhythm-related gene expression levels in patients with epithelial ovarian cancer. Acta Obstet Gynecol Scand 87(10):1060–70

    Article  PubMed  CAS  Google Scholar 

  • Touitou Y, Auzéby A, Camus F et al (2009) Daily profiles of salivary and urinary melatonin and steroids in healthy prepubertal boys. J Pediatr Endocrinol Metab 22(11):1009–15

    Article  PubMed  CAS  Google Scholar 

  • Tozer TN, Rowland M (2006) Introduction to pharmacokinetics and pharmacodynamics: the quantitative basis of drug therapy. Lippincott, Baltimore, MD

    Google Scholar 

  • Tsukamoto Y, Kato Y, Ura M et al (2001) A physiologically based pharmacokinetic analysis of capecitabine, a triple prodrug of 5-FU, in humans: the mechanism for tumor-selective accumulation of 5-FU. Pharm Res 18(8):1190–202

    Article  PubMed  CAS  Google Scholar 

  • Van Ryckeghem F, Van Belle S (2010) Management of chemotherapy-induced nausea and vomiting. Acta Clin Belg 65(5):305–10

    PubMed  Google Scholar 

  • Van Someren EJ, Nagtegaal E (2007) Improving melatonin circadian phase estimates. Sleep Med 8:590–601

    Article  PubMed  Google Scholar 

  • Vassal G, Challine D, Koscielny S et al (1993) Chronopharmacology of high-dose busulfan in children. Cancer Res 53(7):1534–7

    PubMed  CAS  Google Scholar 

  • Veldhuis JD, Iranmanesh A, Johnson ML et al (1990) Amplitude, but not frequency, modulation of adrenocorticotropin secretory bursts gives rise to the nyctohemeral rhythm of the corticotropic axis in man. J Clin Endocrinol Metab 71:452–63

    Article  PubMed  CAS  Google Scholar 

  • Vink JM, Groot AS, Kerkhof GA et al (2001) Genetic analysis of morningness and eveningness. Chronobiol Int 18:809–22

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Huang Y (2007) Pharmacogenomics of sex difference in chemotherapeutic toxicity. Curr Drug Discov Technol 4(1):59–68

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse J, Drust B, Weinert D et al (2005) The circadian rhythm of core temperature: origin and some implications for exercise performance. Chronobiol Int 22(2):207–25

    Article  PubMed  Google Scholar 

  • Weis J (2011) Cancer-related fatigue: prevalence, assessment and treatment strategies. Expert Rev Pharmacoecon Outcomes Res 11(4):441–6

    Article  PubMed  Google Scholar 

  • Wood PA, Yang X, Taber A et al (2008) Period 2 mutation accelerates ApcMin/+ tumorigenesis. Mol Cancer Res 6(11):1786–93

    Article  PubMed  CAS  Google Scholar 

  • Yeh KT, Yang MY, Liu TC et al (2005) Abnormal expression of period 1 (PER1) in endometrial carcinoma. J Pathol 206(1):111–20

    Article  PubMed  CAS  Google Scholar 

  • Yi C, Mu L, de la Longrais IA et al (2010) The circadian gene NPAS2 is a novel prognostic biomarker for breast cancer. Breast Cancer Res Treat 120(3):663–9

    Article  PubMed  CAS  Google Scholar 

  • Zhou F, He X, Liu H et al (2011) Functional polymorphisms of circadian positive feedback regulation genes and clinical outcome of Chinese patients with resected colorectal cancer. Cancer. doi:10.1002/cncr.26348

  • Zhu Y, Leaderer D, Guss C et al (2007) Ala394Thr polymorphism in the clock gene NPAS2: a circadian modifier for the risk of non-Hodgkin’s lymphoma. Int J Cancer 120(2):432–5

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Stevens RG, Leaderer D et al (2008) Non-synonymous polymorphisms in the circadian gene NPAS2 and breast cancer risk. Breast Cancer Res Treat 107(3):421–5

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Lévi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ortiz-Tudela, E., Mteyrek, A., Ballesta, A., Innominato, P.F., Lévi, F. (2013). Cancer Chronotherapeutics: Experimental, Theoretical, and Clinical Aspects. In: Kramer, A., Merrow, M. (eds) Circadian Clocks. Handbook of Experimental Pharmacology, vol 217. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25950-0_11

Download citation

Publish with us

Policies and ethics