A Note on Poles and Zeros of Positive Continuous-Time Linear Systems

  • Jerzy TokarzewskiEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 134)


The notions of zeros and poles of continuous-time positive linear systems are introduced. These notions are based on state-space dynamical characterization of poles and zeros for standard systems and on additional assumptions following from positivity. It is shown that poles and zeros of the positive systems are real numbers. The results are illustrated by simple examples.


control systems positive linear continuous-time poles zeros 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benvenuti, L., Farina, L.: A Tutorial on the Positive Realization Problem. IEEE Trans. AC 49, 651–664 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Benvenuti, L., Farina, L.: The Importance of Being Positive: Admissible Dynamics for Positive Systems. In: Bru, R., Romero-Vivó, S. (eds.) POSTA 2009. LNCIS, vol. 389, pp. 55–62. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bru, R., Romero-Vivo, S.: Positive Systems. LNCIS, vol. 389. Springer, Berlin (2009)zbMATHCrossRefGoogle Scholar
  4. 4.
    Chen, C.T.: Linear System Theory and Design. HRW, NY (1984)Google Scholar
  5. 5.
    Farina, L., Rinaldi, S.: Positive Linear Systems: Theory and Applications. Wiley, NY (2000)zbMATHCrossRefGoogle Scholar
  6. 6.
    Kaczorek, T.: Positive 1D and 2D Systems. Springer, London (2002)zbMATHCrossRefGoogle Scholar
  7. 7.
    Kaczorek, T.: Decoupling Zeros of Positive Discrete-Time Linear Systems. Circuits and Systems 1, 41–48 (2010), CrossRefGoogle Scholar
  8. 8.
    Tokarzewski, J.: Finite Zeros in Discrete Time Control Systems. LNCIS, vol. 338. Springer, Berlin (2006)zbMATHGoogle Scholar
  9. 9.
    Tokarzewski, J.: Zeros in Linear Systems: a Geometric Approach. Publishing House of the Warsaw University of Technology, Warsaw (2002)Google Scholar
  10. 10.
    Tokarzewski, J.: Invariant Zeros of Linear Singular Systems via the Generalized Eigenvalue Problem. In: Zeng, D. (ed.) Future Intelligent Information Systems. LNEE, vol. 86, pp. 263–270. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Tokarzewski, J.: Finite Zeros of Positive Linear Discrete Time Systems. Bulletin of the Polish Academy of Sciences: Technical Sciences (to be published)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations