Skip to main content
  • 1555 Accesses

Abstract

We shall call the system of coordinates (λ, ξ, η, ς) defined in (6.1) unified in the sense that it unifies the Eulerian system when Q = 0 with the Lagrangian when Q = q, and also in the sense that the system of governing equations (6.19) unites the geometrical conservation laws with the physical ones to form a closed system of PDE in conservation form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.G. MARGOLIN. Introduction to an arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys., 135: 198–202, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. J. BENSON. Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Method. Appl. Mech. Engrg., 99: 235–394, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  3. W.H. HUI AND S. KUDRIAKOV. A unified coordinate system for solving the threedimensional Euler equations. J. Comput. Phys., 172: 235–260, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  4. W.H. HUI AND Y. HE. Hyperbolicity and optimal coordinates of the threedimensional steady Euler equations. SIAM Journal on Applied Mathematics, 57: 893–928, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. ROGERS, W.K. SCHIEF AND W.H. HUI. On complex-lamellar motion of a Prim gas. J. Math Anal. Appl., 266: 55–69, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  6. K. MILLER AND R.N. MILLER. Moving finite element. SIAM J. Numer Anal., 18: 1019–1032, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  7. E.A. DORFI AND L. O’C. DRURY. Simple adaptive grids for 1-D initial value problems. J. Comput. Phys., 69: 175–195, 1987.

    Article  MATH  Google Scholar 

  8. W. HUANG, Y. REN AND R.D. RUSSELL. Moving mesh methods based upon moving mesh partial differential equations. J. Comput. Phys., 11: 279–290, 1994.

    Article  MathSciNet  Google Scholar 

  9. W. HUANG AND R.D. RUSSELL. Adaptive mesh movement-the MMPDE approach and its applications. J. Comput. Appl. Math., 128: 383–398, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. HUANG, J. MA AND R.D. RUSSELL. A study of moving mesh PDE methods for numerical simulation of blowup in reaction diffusion equations. J. Comput. Phys., (2008), doi: 10.1016/j.jcp.2008.03.024.

    Google Scholar 

  11. S. ADJERID AND J.E. FLAHERTY. A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations. SIAM J. Numer. Anal., 23: 778–795, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  12. B.M. HERBST, S.W. SCHOOMBIE AND A.R. MITCHELL. Equidistributing principles in moving mesh finite element methods. J. Comput. Appl. Math., 9: 377–389, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  13. S.F. DAVIS AND J.E. FLAHERTY. An adaptive finite element method for initialboundary value problems for partial differential equations. SIAM J. Sci. Stat. Comput., 3: 6–27, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  14. R.G. HINDMAN AND J. SPENCER. A new approach to truly adaptive grid generation. AIAA Paper 83-0450, 1983.

    Google Scholar 

  15. Y. REN AND R.D. RUSSELL. Moving mesh techniques based upon equidistribution and their stability. SIAM J. Sci. Statis. Comput., 13: 1265–1286, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. NI, S. JIANG AND K. XU. Remapping-free ALE-type kinetic method for flow computations. J. Comput. Phys., 228: 3154–3171, 2009.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hui, WH., Xu, K. (2012). Properties of the Unified Coordinates. In: Computational Fluid Dynamics Based on the Unified Coordinates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25896-1_7

Download citation

Publish with us

Policies and ethics