Skip to main content

Magma Mixing in the 1100 AD Montaña Reventada Composite Lava Flow: Interaction of Rift Zone and Central Complex Magmatism

  • Chapter
  • First Online:
Teide Volcano

Abstract

Zoned eruption deposits frequently show a lower felsic and an upper mafic member, thought to reflect eruption from a large, stratified magma chambers. In contrast, however, the Montaña Reventada composite flow in Tenerife consists of a lower basanite and a much thicker upper phonolite. A sharp interface separates the basanite and phonolite, and a chilled margin at this contact indicates the basanite was still hot upon emplacement of the phonolite, i.e. the two magmas erupted in very quick succession. Three types of mafic to intermediate inclusions are found in the phonolite, which comprise foamy quenched ones, inclusions with chilled margins and those that are physically mingled, reflecting progressive mixing with a decreasing temperature contrast between the end-member magmas involved. Analysis of basanite, phonolite and inclusions for majors, traces and Sr, Nd and Pb isotopes show the inclusions to be derived from binary mixing of basanite and phonolite end-members in ratios of 2:1–4:1. Although basanite and phonolite magmas were erupted in quick succession, contrasting 206Pb/204Pb ratios show them to be genetically distinct. The Montaña Reventada basanite and phonolite first came into contact just prior to eruption and had seemingly limited interaction time. Montaña Reventada erupted from the transition zone between two plumbing systems, the phonolitic Teide-Pico Viejo complex and the basanitic Northwest rift zone. A rift zone basanite dyke most likely intersected a previously emplaced phonolite magma pocket, leading to eruption of geochemically and texturally unaffected basanite, followed by inclusion-rich phonolite that exploited the already established conduit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ablay GJ, Carroll MR, Palmer MR, Martí J, Sparks RSJ (1998) Basanite-phonolite lineages of the teide-pico viejo volcanic complex, Tenerife, Canary Islands. J Petrol 39:905–936

    Article  Google Scholar 

  • Abratis M, Schmincke H-U, Hansteen T (2002) Composition and evolution of submarine volcanic rocks from the central and western Canary Islands. Int J Earth Sci 91:562–582

    Article  Google Scholar 

  • Araña V, Aparicio A, Garcia Cacho L, Garcia Garcia R (1989) Mezcla de magmas en la región central de Tenerife. In: Araña V, Coello J (eds) Los Volcanes y La Caldera del Parque Nacional del Teide (Tenerife, Islas Canarias). Serie Técnica, ICONA, pp 269–298

    Google Scholar 

  • Araña V, Martí J, Aparicio A, García-Cacho L, García-García R (1994) Magma mixing in alkaline magmas: an example from Tenerife, Canary Islands. Lithos 32:1–19

    Article  Google Scholar 

  • Bacon CR (1986) Magmatic inclusions in silicic and intermediate volcanic rocks. J Geophys Res 91:6091–6112

    Article  Google Scholar 

  • Bacon CR, Metz JM (1984) Magmatic inclusions in rhyolites, contaminated basalts, and compositional zonation beneath the Coso volcanic field, California. Contrib Mineral Petrol 85:346–365

    Article  Google Scholar 

  • Bence AE, Albee AL (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J Geol 76:382–403

    Article  Google Scholar 

  • Bindeman IN, Perchuk LL (1993) Experimental studies of magma mixing at high pressures. Int Geol Rev 35:721–733

    Article  Google Scholar 

  • Bindeman IN, Davis AM (1999) Convection and redistribution of alkalis and trace elements during the mingling of basaltic and rhyolitic melts. Petrol 7:91–101

    Google Scholar 

  • Blake S (1981) Eruptions from zoned magma chambers. J Geol Soc (London, UK) 138:281–287

    Google Scholar 

  • Blake S, Ivey GN (1986) Magma-mixing and the dynamics of withdrawal from stratified reservoirs. J Volcanol Geotherm Res 27:153–178

    Article  Google Scholar 

  • Calanchi N, Rosa R, Mazzuoli R, Rossi P, Santacroce R, Ventura G (1993) Silicic magma entering a basaltic magma chamber: eruptive dynamics and magma mixing—an example from Salina (Aeolian islands, Southern Tyrrhenian Sea). Bull Volcanol 55:504–522

    Article  Google Scholar 

  • Campbell IH, Turner JS (1986) The influence of viscosity on fountains in magma chambers. J Petrol 27:1–30

    Article  Google Scholar 

  • Carracedo JC, Rodríguez Badiola E, Guillou H, Paterne M, Scaillet S, Pérez Torrado FJ, Paris R, Fra-Paleo U, Hansen A (2007) Eruptive and structural history of Teide Volcano and Rift Zones of Tenerife, Canary Islands. Geol Soc Am Bull 119:1027–1051

    Article  Google Scholar 

  • Carracedo JC, Rodríguez Badiola E, Guillou H, Paterne M, Scaillet S, Pérez Torrado FJ, Paris R, Rodríguez González A, Socorro S (2008) El Volcán Teide–Volcanología, Interpretación de Pasajes y Iterinarios Comentados. Caja Generál de Ahorros de Canarias

    Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic successions–modern and ancient. Allen & Unwin Ltd, London

    Book  Google Scholar 

  • Coombs ML, Eichelberger JC, Rutherford MJ (2000) Magma storage and mixing conditions for the 1953–1974 eruptions of Southwest Trident volcano, Katmai National Park, Alaska. Contrib Mineral Petrol 140:99–118

    Article  Google Scholar 

  • Coombs ML, Eichelberger JC, Rutherford MJ (2003) Experimental and textural constraints on mafic enclave formation in volcanic rocks. J Volcanol Geotherm Res 119:125–144

    Article  Google Scholar 

  • De Campos CP, Dingwell DB, Perugini D, Civetta L, Fehr TK (2008) Heterogeneities in magma chambers: Insights from the behavior of major and minor elements during mixing experiments with natural alkaline melts. Chem Geol 256:131–145

    Article  Google Scholar 

  • Eichelberger JC (1980) Vesiculation of mafic magma during replenishment of silicic magma reservoirs. Nature 288:446–450

    Article  Google Scholar 

  • Eichelberger JC, Izbekov PE (2000) Eruption of andesite triggered by dyke injection: Contrasting cases at Karymsky Volcano, Kamchatka and Mt Katmai, Alaska. Philos Trans R Soc London, Ser A 358:1465–1485

    Article  Google Scholar 

  • Eichelberger JC, Chertkoff DG, Dreher ST, Nye CJ (2000) Magmas in collision: rethinking chemical zonation in silicic magmas. Geology 28:603–606

    Article  Google Scholar 

  • Freundt A, Schmincke H-U (1992) Mixing of rhyolite, trachyte and basalt magma erupted from a vertically and laterally zoned reservoir, composite flow P1, Gran Canaria. Contrib Mineral Petrol 112:1–19

    Article  Google Scholar 

  • Geldmacher J, Haase KM, Devey CW, Garbe-Schönberg CD (1998) The petrogenesis of tertiary cone-sheets in Ardnamurchan, NW Scotland: petrological and geochemical constraints on crustal contamination and partial melting. Contrib Mineral Petrol 131:196–209

    Article  Google Scholar 

  • Gertisser R (2010) Eyjafjallajökull volcano causes widespread disruption to European air traffic. Geol Today 26:94–95

    Article  Google Scholar 

  • Gudmundsson MT, Pedersen R, Vogfjörd K, Thorbjarnardóttir B, Jakobsdóttir S, Roberts MJ (2010) Eruptions of Eyjafjallajökull Volcano, Iceland. Eos Trans AGU 91:190–191

    Article  Google Scholar 

  • Gurenko AA, Hoernle KA, Hauff F, Schmincke H-U, Han D, Miura YN, Kaneoka I (2006) Major, trace element and Nd-Sr-Pb-O-He-Ar isotope signatures of shield stage lavas from the central and western Canary Islands: Insights into mantle and crustal processes. Chem Geol 233:75–112

    Article  Google Scholar 

  • Hammer JE, Cashman KV, Voight B (2000) Magmatic processes revealed by textural and compositional trends in Merapi dome lavas. J Volcanol Geotherm Res 100:165–192

    Article  Google Scholar 

  • Hawkesworth CJ, Blake S, Evans P, Hughes R, Macdonald R, Thomas LE, Turner SP, Zellmer G (2000) Time scales of crystal fractionation in magma chambers–integrating physical, isotopic and geochemical perspectives. J Petrol 41:991–1006

    Article  Google Scholar 

  • Hibbard MJ (1995) Petrography to petrogenesis. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Hildreth EW (1979) The bishop tuff: evidence for the origin of compositional zonation in silicic magma chambers. Geol Soc Spec Publ 180:43–75

    Google Scholar 

  • Huppert HE, Turner JS, Sparks RSJ (1982) Replenished magma chambers: effects of compositional zonation and input rates. Earth Planet Sci Lett 57:345–357

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ, Turner JS (1983) Laboratory investigations of viscous effects in replenished magma chambers. Earth Planet Sci Lett 65:377–381

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ, Turner JS (1984) Some effects of viscosity on the dynamics of replenished magma chambers. J Geophys Res 89:6857–6877

    Article  Google Scholar 

  • Izbekov PE, Eichelberger JC, Ivanov BV (2004) The 1996 Eruption of Karymsky Volcano, Kamchatka: historical record of basaltic replenishment of an andesite reservoir. J Petrol 45:2325–2345

    Article  Google Scholar 

  • Jellinek AM, Kerr RC, Griffiths RW (1999) Mixing and compositional stratification produced by natural convection 1. Experiments and their application to Earth’s core and mantle. J Geophys Res Solid Earth 104:7183–7201

    Article  Google Scholar 

  • Kouchi A, Sunagawa I (1985) A model for mixing basaltic and dacitic magmas as deduced from experimental data. Contrib Mineral Petrol 89:17–23

    Article  Google Scholar 

  • Kuritani T (2001) Replenishment of a mafic magma in a zoned felsic magma chamber beneath Rishiri Volcano, Japan. Bull Volcanol 62:533–548

    Article  Google Scholar 

  • Le Bas MJ, Maitre RWL, Streckeisen A, Zanettin B, ISotSoI Rocks (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750

    Article  Google Scholar 

  • Lesher CE (1986) Effects of silicate liquid composition in mineral-liquid element partitioning from soret diffusion studies. J Geophys Res 91:6123–6141

    Article  Google Scholar 

  • Lesher CE, Walker D (1986) Solution properties of silicate liquids from thermal diffusion experiments. Geochim Cosmochim Acta 50:1397–1411

    Article  Google Scholar 

  • Marshall LA, Sparks RSJ (1984) Origin of some mixed-magma and net-veined ring intrusions. J Geol Soc (London, UK) 141:171–182

    Google Scholar 

  • Merle O (1998) Internal strain within lava flows from analogue modelling. J Volcanol Geotherm Res 81:189–206

    Article  Google Scholar 

  • Palacz ZA, Wolff JA (1989) Strontium, neodymium and lead isotope characteristics of the Granadilla Pumice, Tenerife: a study of the causes of strontium isotope disequilibrium in felsic pyroclastic deposits. Geol Soc Spec Publ 42:147–159

    Article  Google Scholar 

  • Pallister JS, Hoblitt RP, Reyes AG (1992) A basalt trigger for the 1991 eruptions of Pinatubo volcano? Nature 356:426–428

    Article  Google Scholar 

  • Perugini D, Poli G, Mazzuoli R (2003) Chaotic advection, fractals and diffusion during mixing of magmas: evidence from lava flows. J Volcanol Geotherm Res 124:255–279

    Article  Google Scholar 

  • Simonsen SL, Neumann ER, Seim K (2000) Sr-Nd-Pb isotope and trace-element geochemistry evidence for a young HIMU source and assimilation at Tenerife (Canary Island). J Volcanol Geotherm Res 103:299–312

    Article  Google Scholar 

  • Snyder D, Tait S (1996) Magma mixing by convective entrainment. Nature 379:529–531

    Article  Google Scholar 

  • Sparks SRJ, Sigurdsson H, Wilson L (1977) Magma mixing: a mechanism for triggering acid explosive eruptions. Nature 267:315–318

    Article  Google Scholar 

  • Stewart ML, Pearce TH (2004) Sieve-textured plagioclase in dacitic magma: Interference imaging results. Am Mineral 89:348–351

    Google Scholar 

  • Troll VR, Schmincke H-U (2002) Magma mixing and crustal recycling recorded in ternary feldspar from compositionally zoned peralkaline ignimbrite ‘A’, Gran Canaria, Canary Islands. J Petrol 43:243–270

    Article  Google Scholar 

  • Troll VR, Donaldson CH, Emeleus CH (2004) Pre-eruptive magma mixing in ash-flow deposits of the Tertiary Rum Igneous Centre Scotland. Contrib Mineral Petrol 147(6):722–739

    Article  Google Scholar 

  • Turner JS (1980) A fluid-dynamical model of differentiation and layering in magma chambers. Nature 285:213–215

    Article  Google Scholar 

  • Turner JS, Campbell IH (1986) Convection and mixing in magma chambers. Earth Sci Rev 23:255–352

    Article  Google Scholar 

  • Turner SP, Platt JP, George RMM, Kelley SP, Pearson DG, Nowell GM (1999) Magmatism associated with orogenic collapse of the betic-alboran domain, SE Spain. J Petrol 40:1011–1036

    Article  Google Scholar 

  • Walker D, DeLong SE (1982) Soret separation of mid-ocean ridge basalt magma. Contrib Mineral Petrol 79:231–240

    Article  Google Scholar 

  • Walker D, Lesher CE, Hays JF (1981) Soret separation of lunar liquids. Paper presented at the lunar and planetary science XII, 16–20 March

    Google Scholar 

  • Watson EB (1982) Basalt contamination by continental crust: Some experiments and models. Contrib Mineral Petrol 80:73–87

    Article  Google Scholar 

  • Watson EB, Baker DR (1991) Chemical diffusion in Magmas: an overview of experimental results and geochemical applications. In: Perchuk LL, Kushiro I (eds) Advances in physical geochemistry, vol 6. Springer, New York, pp 120–151

    Google Scholar 

  • Wiesmaier S (2010) Magmatic differentiation and bimodality in oceanic island settings—implications for the petrogenesis of magma in Tenerife, Spain. PhD Thesis, Trinity College Dublin, Dublin

    Google Scholar 

  • Wiesmaier S, Deegan F, Troll V, Carracedo J, Chadwick J, Chew D (2011) Magma mixing in the 1100 AD Montaña Reventada composite lava flow, Tenerife, Canary Islands: interaction between rift zone and central volcano plumbing systems. Contrib Mineral Petrol 162:651–669

    Article  Google Scholar 

  • Wolff JA, Storey M (1984) Zoning in highly alkaline magma bodies. Geol Mag 121:563–575

    Article  Google Scholar 

  • Wolff JA, Grandy JS, Larson PB (2000) Interaction of mantle-derived magma with island crust? Trace element and oxygen isotope data from the Diego Hernandez Formation, Las Canadas, Tenerife. J Volcanol Geotherm Res 103:343–366

    Article  Google Scholar 

  • Zimanowski B, Büttner R, Koopmann A (2004) Experiments on magma mixing. Geophys Res Lett 31:L09612

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Wiesmaier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiesmaier, S., Deegan, F.M., Troll, V.R., Carracedo, J.C., Chadwick, J.P. (2013). Magma Mixing in the 1100 AD Montaña Reventada Composite Lava Flow: Interaction of Rift Zone and Central Complex Magmatism. In: Carracedo, J., Troll, V. (eds) Teide Volcano. Active Volcanoes of the World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25893-0_11

Download citation

Publish with us

Policies and ethics