Advertisement

Details of the Envelope Functions

  • Volker Eyert
Part of the Lecture Notes in Physics book series (LNP, volume 849)

Abstract

This chapter includes calculational aspects of the envelope functions and related quantities, which are more of a technical nature. This comprises a large variety of modern numerical algorithms, which are not specific for the ASW methods but rather of a much broader interest. To be specific, recipes for the efficient calculation of, e.g., spherical Bessel functions, spherical harmonics, and quantities related to the Ewald method are given.

References

  1. 1.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972) zbMATHGoogle Scholar
  2. 2.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt-Saunders, Philadelphia, 1976) Google Scholar
  3. 3.
    P.P. Ewald, Ann. Phys. 64, 253 (1921) zbMATHCrossRefGoogle Scholar
  4. 4.
    V. Eyert, Entwicklung und Implementation eines Full-Potential-ASW-Verfahrens, PhD thesis, Technische Hochschule Darmstadt, 1991 Google Scholar
  5. 5.
    W. Gautschi, SIAM Rev. 9, 24 (1967) MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    W. Gautschi, Commun. ACM 12, 635 (1969) CrossRefGoogle Scholar
  7. 7.
    W. Gautschi, SIAM J. Numer. Anal. 7, 187 (1970) MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 1980) zbMATHGoogle Scholar
  9. 9.
    A. Jablonski, J. Comput. Phys. 111, 256 (1994) MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975) zbMATHGoogle Scholar
  11. 11.
    W. Ludwig, Festkörperphysik (Akad. Verlagsgesellschaft, Heidelberg, 1970) Google Scholar
  12. 12.
    A. Messiah, Quantum Mechanics, vol. 1 (North Holland, Amsterdam, 1976) Google Scholar
  13. 13.
    A. Messiah, Quantum Mechanics, vol. 2 (North Holland, Amsterdam, 1978) Google Scholar
  14. 14.
    P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953) zbMATHGoogle Scholar
  15. 15.
    G.P.M. Poppe, C.M.J. Wijers, ACM Trans. Math. Software 16, 38 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes—The Art of Scientific Computing (Cambridge University Press, Cambridge, 1989) Google Scholar
  17. 17.
    G.N. Watson, Theory of Bessel Functions (University Press, Cambridge, 1966) zbMATHGoogle Scholar
  18. 18.
    A.R. Williams, J.F. Janak, V.L. Moruzzi, Phys. Rev. B 6, 4509 (1972) ADSCrossRefGoogle Scholar
  19. 19.
    A.R. Williams, J. Kübler, C.D. Gelatt Jr., Phys. Rev. B 19, 6094 (1979) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Volker Eyert
    • 1
  1. 1.Materials Design SARLMontrougeFrance

Personalised recommendations