Advertisement

The Plane-Wave Based Full-Potential ASW Method

  • Volker Eyert
Part of the Lecture Notes in Physics book series (LNP, volume 849)

Abstract

While the standard ASW method has proven to be extremely fast, stable, and reliable in a vast number of applications, the method suffers from sometimes too crude approximations and simplifications. One of these is the atomic-sphere approximation, which hinders an accurate determination of the total energy and does not allow for the calculation of, e.g., electric field gradients and phonon frequencies. These obstacles are overcome by the full-potential ASW methods to be presented in this and the following chapter. The plane-wave based full-potential ASW method is essentially based on the concept of additive augmentation as well as the use of plane-wave expansions of the electron density and the effective potential. Following again the standard sequence of the self-consistency cycle this chapter outlines the main steps of the plane-wave based full-potential ASW method and discusses where it differs from the standard method. The chapter closes with two sections on the calculation of optical and transport properties.

Keywords

Envelope Function Local Part Atomic Sphere High Partial Wave Valence Electron Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.B. Allen, Boltzmann theory and resistivity of metals, in Quantum Theory of Real Materials, ed. by J.R. Chelikowsky, S.G. Louie (Kluwer, Boston, 1996), pp. 219–250 CrossRefGoogle Scholar
  2. 2.
    C. Ambrosch-Draxl, J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    V.N. Antonov, P.M. Oppeneer, A.N. Yaresko, A.Y. Perlov, T. Kraft, Phys. Rev. B 56, 13012 (1997) ADSCrossRefGoogle Scholar
  4. 4.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt-Saunders, Philadelphia, 1976) Google Scholar
  5. 5.
    K. Atkinson, J. Austral. Math. Soc. B 23, 332 (1982) zbMATHCrossRefGoogle Scholar
  6. 6.
    U. von Barth, Density functional theory for solids, in The Electronic Structure of Complex Systems, ed. by P. Phariseau, W. Temmerman (Plenum Press, New York, 1984), pp. 67–140 CrossRefGoogle Scholar
  7. 7.
    U. von Barth, An overview of density functional theory, in Many-Body Phenomena at Surfaces, ed. by D. Langreth, H. Suhl (Academic Press, Orlando, 1984), pp. 3–50 Google Scholar
  8. 8.
    Z.P. Bažant, B.H. Oh, Z. Angew. Math. Mech. 66, 37 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    P.E. Blöchl, Gesamtenergien, Kräfte und Metall-Halbleiter Grenzflächen, PhD thesis, Universität Stuttgart, 1989 Google Scholar
  10. 10.
    N.E. Christensen, Phys. Rev. B 29, 5547 (1984) ADSCrossRefGoogle Scholar
  11. 11.
    G. Czycholl, Theoretische Festkörperphysik (Springer, Berlin, 2004) Google Scholar
  12. 12.
    R.M. Dreizler, E.K.U. Gross, Density Functional Theory (Springer, Berlin, 1990) zbMATHCrossRefGoogle Scholar
  13. 13.
    H. Ebert, Rep. Prog. Phys. 59, 1665 (1996) ADSCrossRefGoogle Scholar
  14. 14.
    H. Eschrig, The Fundamentals of Density Functional Theory (Edition am Gutenbergplatz, Leipzig, 2003) zbMATHGoogle Scholar
  15. 15.
    V. Eyert, Entwicklung und Implementation eines Full-Potential-ASW-Verfahrens, PhD thesis, Technische Hochschule Darmstadt, 1991 Google Scholar
  16. 16.
    V. Eyert, J. Comput. Phys. 124, 271 (1996) MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    V. Eyert, Electronic Structure of Crystalline Materials, 2nd edn. (University of Augsburg, Augsburg, 2005) Google Scholar
  18. 18.
    P. Keast, J. Comput. Appl. Math. 17, 151 (1987) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    P. Keast, J.C. Diaz, SIAM J. Numer. Anal. 20, 406 (1983) MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    J. Kübler, V. Eyert, Electronic structure calculations, in Electronic and Magnetic Properties of Metals and Ceramics, ed. by K.H.J. Buschow (VCH Verlagsgesellschaft, Weinheim, 1992), pp. 1–145; vol. 3A of Materials Science and Technology, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (VCH Verlagsgesellschaft, Weinheim, 1991–1996) Google Scholar
  21. 21.
    G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006) ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996) ADSCrossRefGoogle Scholar
  23. 23.
    T. Maurer, Berechnung des magneto-optischen Kerr-Effekts, Diploma thesis, Technische Hochschule Darmstadt, 1991 Google Scholar
  24. 24.
    A.D. McLaren, Math. Comput. 17, 361 (1963) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    M.S. Methfessel, Multipole green functions for electronic structure calculations, PhD thesis, University of Nijmegen, 1986 Google Scholar
  26. 26.
    I.P. Mysovskih, Sov. Math. Dokl. 18, 925 (1977) Google Scholar
  27. 27.
    B.R. Nag, Electron Transport in Compounds Semiconductors (Springer, Berlin, 1980) CrossRefGoogle Scholar
  28. 28.
    P.M. Oppeneer, T. Maurer, J. Sticht, J. Kübler, Phys. Rev. B 45, 10924 (1992) ADSCrossRefGoogle Scholar
  29. 29.
    P.M. Oppeneer, J. Sticht, T. Maurer, J. Kübler, Z. Phys. B 88, 309 (1992) ADSCrossRefGoogle Scholar
  30. 30.
    R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989) Google Scholar
  31. 31.
    A.S. Popov, Comput. Math. Math. Phys. 35, 369 (1995) MathSciNetzbMATHGoogle Scholar
  32. 32.
    H.W.A.M. Rompa, R. Eppenga, M.F.H. Schuurmans, Physica B 145, 5 (1987) CrossRefGoogle Scholar
  33. 33.
    T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, J.O. Sofo, Phys. Rev. B 68, 125210 (2003) ADSCrossRefGoogle Scholar
  34. 34.
    W.W. Schulz, P.B. Allen, N. Trivedi, Phys. Rev. B 45, 10886 (1992) ADSCrossRefGoogle Scholar
  35. 35.
    A.H. Stroud, Approximate Calculation of Multiple Integrals (Prentice-Hall, Englewood Cliffs, 1971) zbMATHGoogle Scholar
  36. 36.
    A.H. Stroud, SIAM J. Numer. Anal. 10, 559 (1973) MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    C.S. Wang, J. Callaway, Phys. Rev. B 9, 4897 (1974) ADSCrossRefGoogle Scholar
  38. 38.
    M. Weinert, J. Math. Phys. 22, 2433 (1981) MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    K.-H. Weyrich, Solid State Commun. 54, 975 (1985) ADSCrossRefGoogle Scholar
  40. 40.
    K.-H. Weyrich, Phys. Rev. B 37, 10269 (1988) ADSCrossRefGoogle Scholar
  41. 41.
    K.-H. Weyrich, L. Brey, N.E. Christensen, Phys. Rev. B 38, 1392 (1988) ADSCrossRefGoogle Scholar
  42. 42.
    K.-H. Weyrich, R. Siems, Jap. J. Appl. Phys. Suppl. 24, 201 (1985) Google Scholar
  43. 43.
    K.-H. Weyrich, R. Siems, Z. Phys. 61, 63 (1985) CrossRefGoogle Scholar
  44. 44.
    J.M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 2001) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Volker Eyert
    • 1
  1. 1.Materials Design SARLMontrougeFrance

Personalised recommendations