Skip to main content

Mining Patterns from Longitudinal Studies

  • Conference paper
  • 1398 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7121))

Abstract

Longitudinal studies are observational studies that involve repeated observations of the same variables over long periods of time. In this paper, we propose the use of tree pattern mining techniques to discover potentially interesting patterns within longitudinal data sets. Following the approach described in [15], we propose four different representation schemes for longitudinal studies and we analyze the kinds of patterns that can be identified using each one of the proposed representation schemes. Our analysis provides some practical guidelines that might be useful in practice for exploring longitudinal datasets.

The work described in this paper has been partially supported by the TIN2009-08296 research project from the Spanish Ministry of Science and Innovation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, K., Kawasoe, S., Asai, T., Arimura, H., Arikawa, S.: Efficient substructure discovery from large semi-structured data. In: Proceedings of the 2nd SIAM International Conference on Data Mining (2002)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of 20th International Conference on Very Large Data Bases, September 12-15, pp. 487–499 (1994)

    Google Scholar 

  3. Alati, R., O’Callaghan, M., Najman, J.M., Williams, G.M., Bor, W., Lawlor, D.A.: Asthma and internalizing behavior problems in adolescence: A longitudinal study. Psychosomatic Medicine 67(3), 462–470 (2005)

    Article  Google Scholar 

  4. Asai, T., Arimura, H., Uno, T., Nakano, S.-i.: Discovering Frequent Substructures in Large Unordered Trees. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843, pp. 47–61. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Chi, Y., Yang, Y., Muntz, R.R.: HybridTreeMiner: An efficient algorithm for mining frequent rooted trees and free trees using canonical form. In: Proceedings of the 16th International Conference on Scientific and Statistical Database Management. pp. 11–20 (2004)

    Google Scholar 

  6. Cothey, V.: A longitudinal study of world wide web users’ information-searching behavior. Journal of the American Society for Information Science and Technology 53(2), 67–78 (2002)

    Article  Google Scholar 

  7. Diggle, P.J., Liang, K.Y., Zeger, S.L.: Analysis of longitudinal data. Oxford Statistical Science Series, vol. 13. Clarendon Press (1994)

    Google Scholar 

  8. Fitzmaurice, G.M., Laird, N.M., Ware, J.H.: Applied Longitudinal Analysis. Wiley Series in Probability and Statistics (2004)

    Google Scholar 

  9. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1–12 (2000)

    Google Scholar 

  10. Harada, S., Wobbrock, J.O., Malkin, J., Bilmes, J.A., Landay, J.A.: Longitudinal study of people learning to use continuous voice-based cursor control. In: Proceedings of the 27th International Conference on Human Factors in Computing Systems, pp. 347–356 (2009)

    Google Scholar 

  11. Hedeker, D., Gibbons, R.D.: Longitudinal Data Analysis. Wiley-Interscience (2006)

    Google Scholar 

  12. Hido, S., Kawano, H.: AMIOT: Induced ordered tree mining in tree-structured databases. In: Proceedings of the 5th IEEE International Conference on Data Mining, pp. 170–177 (2005)

    Google Scholar 

  13. Jiménez, A., Berzal, F., Cubero, J.C.: Frequent tree pattern mining: A survey. Intelligent Data Analysis 14, 603–622 (2010)

    Google Scholar 

  14. Jiménez, A., Berzal, F., Cubero, J.C.: POTMiner: Mining ordered, unordered, and partially-ordered trees. Knowlegde and Information Systems 23(2), 199–224 (2010)

    Article  Google Scholar 

  15. Jiménez, A., Berzal, F., Cubero, J.C.: Using trees to mine multirelational databases. In: Data Mining and Knowledge Discovery pp. 1–39 (2011), http://dx.doi.org/10.1007/s10618-011-0218-x

  16. Lee, K., Mercante, D.: Longitudinal nominal data analysis using marginalized models. Computational Statistics & Data Analysis 54(1), 208–218 (2010)

    Article  MATH  Google Scholar 

  17. Nijssen, S., Kok, J.N.: Efficient discovery of frequent unordered trees. In: First International Workshop on Mining Graphs, Trees and Sequences (MGTS 2003), in conjunction with ECML/PKDD 2003, pp. 55–64 (2003)

    Google Scholar 

  18. Raudenbush, S.W., Shing Chan, W.: Growth curve analysis in accelerated longitudinal designs. Journal of Research in Crime and Delinquency 29(4), 387–411 (1992)

    Article  Google Scholar 

  19. Roberts, B.W., DelVecchio, W.F.: The rank-order consistency of personality traits from childhood to old age: A quantitative review of longitudinal studies. Psychological Bulletin 126(1), 3–25 (2000)

    Article  Google Scholar 

  20. Singer, J.D., Willett, J.B.: Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. Oxford University Press (2003)

    Google Scholar 

  21. de Vries, H., van’t Riet, J., Spigt, M., Metsemakers, J., van den Akker, M., Vermunt, J.K., Kremers, S.: Clusters of lifestyle behaviors: Results from the Dutch SMILE study. Preventive Medicine 46(3), 203–208 (2008)

    Article  Google Scholar 

  22. Wang, C., Hong, M., Pei, J., Zhou, H., Wang, W., Shi, B.-L.: Efficient Pattern-Growth Methods for Frequent Tree Pattern Mining. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 441–451. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Xiao, Y., Yao, J.F., Li, Z., Dunham, M.H.: Efficient data mining for maximal frequent subtrees. In: Proceedings of the 3rd IEEE International Conference on Data Mining, pp. 379–386 (2003)

    Google Scholar 

  24. Zaki, M.J.: Efficiently mining frequent embedded unordered trees. Fundamenta Informaticae 66(1-2), 33–52 (2005)

    MATH  Google Scholar 

  25. Zaki, M.J.: Efficiently mining frequent trees in a forest: Algorithms and applications. IEEE Transactions on Knowledge and Data Engineering 17(8), 1021–1035 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiménez, A., Berzal, F., Cubero, JC. (2011). Mining Patterns from Longitudinal Studies. In: Tang, J., King, I., Chen, L., Wang, J. (eds) Advanced Data Mining and Applications. ADMA 2011. Lecture Notes in Computer Science(), vol 7121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25856-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25856-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25855-8

  • Online ISBN: 978-3-642-25856-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics