Skip to main content

Combining Instantaneous and Time-Delayed Interactions between Genes - A Two Phase Algorithm Based on Information Theory

  • Conference paper
AI 2011: Advances in Artificial Intelligence (AI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7106))

Included in the following conference series:

Abstract

Understanding the way how genes interact is one of the fundamental questions in systems biology. The modeling of gene regulations currently assumes that genes interact either instantaneously or with a certain amount of time delay. In this paper, we propose an information theory based novel two-phase gene regulatory network (GRN) inference algorithm using the Bayesian network formalism that can model both instantaneous and single-step time-delayed interactions between genes simultaneously. We show the effectiveness of our approach by applying it to the analysis of synthetic data as well as the Saccharomyces cerevisiae gene expression data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. Journal of Computational Biology 7(3-4), 601–620 (2000)

    Article  Google Scholar 

  2. Yu, J., Smith, V., et al.: Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20(18), 3594 (2004)

    Article  Google Scholar 

  3. Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Proc. UAI (UAI 1998), pp. 139–147. Citeseer (1998)

    Google Scholar 

  4. Xing, Z., Wu, D.: Modeling multiple time units delayed gene regulatory network using dynamic Bayesian network. In: Proc. ICDM - Workshops (ICDM 2006). pp. 190–195. IEEE (2006)

    Google Scholar 

  5. Kim, S., Imoto, S., Miyano, S.: Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75(1-3), 57–65 (2004)

    Article  MATH  Google Scholar 

  6. Eaton, D., Murphy, K.: Bayesian structure learning using dynamic programming and MCMC. In: Proc. UAI, UAI 2007 (2007)

    Google Scholar 

  7. Chaitankar, V., Ghosh, P., et al.: A novel gene network inference algorithm using predictive minimum description length approach. BMC Systems Biology 4(suppl. 1), S7 (2010)

    Article  Google Scholar 

  8. Cover, T., Thomas, J.: Elements of information theory, vol. 306. Wiley Online Library (1991)

    Google Scholar 

  9. de Campos, L.: A scoring function for learning Bayesian networks based on mutual information and conditional independence tests. The Journal of Machine Learning Research 7, 2149–2187 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Li, X., Ouyang, G.: Estimating coupling direction between neuronal populations with permutation conditional mutual information. NeuroImage 52(2), 497–507 (2010)

    Article  Google Scholar 

  11. Kullback, S.: Information theory and statistics. Wiley (1968)

    Google Scholar 

  12. Morchen, F., Ultsch, A.: Optimizing time series discretization for knowledge discovery. In: Proc. ACM SIGKDD (SIGKDD 2005), pp. 660–665. ACM (2005)

    Google Scholar 

  13. Zoppoli, P., Morganella, S., Ceccarelli, M.: TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics 11(1), 154 (2010)

    Article  Google Scholar 

  14. Margolin, A., Nemenman, I., et al.: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(suppl. 1), S7 (2006)

    Article  Google Scholar 

  15. Sugimoto, N., Iba, H.: Inference of gene regulatory networks by means of dynamic differential bayesian networks and nonparametric regression. Genome Informatics Series 15(2), 121 (2004)

    Google Scholar 

  16. Sakamoto, E., Iba, H.: Inferring a system of differential equations for a gene regulatory network by using genetic programming. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 720–726. IEEE (2001)

    Google Scholar 

  17. Savageau, M.: 20 Years of S-systems. In: Canonical Nonlinear Modeling. S-systems Approach to Understand Complexity, pp. 1–44 (1991)

    Google Scholar 

  18. Morshed, N., Chetty, M.: Information theoretic dynamic bayesian network approach for reconstructing genetic networks. In: Proc. AIA (AIA 2011), pp. 236–243 (2011)

    Google Scholar 

  19. Noman, N., Iba, H.: Inferring gene regulatory networks using differential evolution with local search heuristics. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 634–647 (2007)

    Google Scholar 

  20. Cantone, I., Marucci, L., et al.: A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137(1), 172–181 (2009)

    Article  Google Scholar 

  21. Della Gatta, G., Bansal, M., et al.: Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. Genome Research 18(6), 939 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morshed, N., Chetty, M. (2011). Combining Instantaneous and Time-Delayed Interactions between Genes - A Two Phase Algorithm Based on Information Theory. In: Wang, D., Reynolds, M. (eds) AI 2011: Advances in Artificial Intelligence. AI 2011. Lecture Notes in Computer Science(), vol 7106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25832-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25832-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25831-2

  • Online ISBN: 978-3-642-25832-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics