Skip to main content

How Do Lettuce Seedlings Adapt to Low-pH Stress Conditions? A Mechanism for Low-pH-Induced Root Hair Formation in Lettuce Seedlings

  • Chapter
  • First Online:

Abstract

Plants are always surrounded by various environmental factors that may act as stressors. Acid rain and acid soil are serious environmental problems that inhibit plant growth. Most studies on acid stress have focused on the toxicity of aluminum (Al) solubilized from the soil by low pH; studies on the effect of low pH alone, however, are limited. Recently, the H+-hypersensitive mutant stop1 was identified. The STOP1 gene is predicted to be involved in signal transduction of H+ and Al tolerance. Analysis of the stop1 mutant facilitated our understanding of the molecular basis of H+ tolerance in plants and the linkage between the H+ and Al toxicity signaling pathways. Low-pH-induced root hair formation in lettuce seedlings is an excellent model for studying adaptation of plants to low-pH stress. Lettuce seedlings form many root hairs at pH 4.0, whereas no root hairs are formed at pH 6.0. Root hairs increase the absorption of water and nutrients from the growth-inhibited main root at pH 4.0. Various key factors in root hair formation have been identified: medium pH, auxin, ethylene, light, cortical microtubule (CMT) randomization, manganese (Mn), sugar, and chlorogenic acid (CGA), all of which interact within a complex network. Light signals are mediated by auxin and ethylene and induce CMT randomization and root hair elongation. Expression of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), ACC oxidase (ACO), and ethylene receptor gene families is differentially regulated by pH, auxin, ethylene, and light. General opinions on microtubule reorganization and its protection against biotic/abiotic stresses are also reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylic acid

ACO:

ACC oxidase

ACS:

ACC synthase

AVG:

Aminoethoxyvinylglycine

CGA:

Chlorogenic acid

CMT:

Cortical microtubule

IAA:

Indole-3-acetic acid

MAPK:

Mitogen-activated protein kinase

PA:

Phosphatidic acid

PCIB:

2-(p-chlorophenoxy)-2-methylpropionic acid

PLD:

Phospholipase D

ROS:

Reactive oxygen species

SAM:

S-adenosylmethionine

SIMK:

Stress-induced MAPK

References

  • Abbasi BH, Tian CL, Murch SJ, Saxena PK, Liu CZ (2007) Light-enhanced caffeic acid derivatives biosynthesis in hairy root cultures of Echinacea purpurea. Plant Cell Rep 26:1367–1372

    PubMed  CAS  Google Scholar 

  • Abdrakhamanova A, Wang QY, Khokhlova L, Nick P (2003) Is microtubule disassembly a trigger for cold acclimation? Plant Cell Physiol 44:676–686

    PubMed  CAS  Google Scholar 

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology. Academic, San Diego

    Google Scholar 

  • Aerts RJ, Baumann TW (1994) Distribution and utilization of chlorogenic acid in Coffea seedlings. J Exp Bot 45:497–503

    CAS  Google Scholar 

  • Anthony RG, Henriques R, Helfer A, Mészáros T, Rios G, Testerink C, Munnik T, Deák M, Koncz C, Bögre L (2004) A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J 11:572–581

    Google Scholar 

  • Arteca JM, Arteca RN (1999) A multi-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase (ACS6) in mature Arabidopsis leaves. Plant Mol Biol 39:209–219

    PubMed  CAS  Google Scholar 

  • Azegami H, Imai K, Yanagihara Y, Inoue Y (2000) Root hairs, which were induced by low pH in lettuce seedling, contributed on the increment of water permeability of root. J Plant Res 114(Suppl):87

    Google Scholar 

  • Balancaflor EB, Hasenstein KH (1995) Growth and microtubule orientation of Zea mays roots subjected to osmotic stress. Int J Plant Sci 156:774–783

    Google Scholar 

  • Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Šamaj J, Chua NH, Peter W, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 227:618–632

    PubMed  Google Scholar 

  • Bao Y, Kost B, Chua NH (2001) Reduced expression of α-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant J 28:145–157

    PubMed  CAS  Google Scholar 

  • Bates TR, Lynch JP (1996) Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ 19:529–538

    CAS  Google Scholar 

  • Bates TR, Lynch JP (2000) Plant growth and phosphorus accumulation of wild type and two root hair mutants of Arabidopsis thaliana (Brassicaceae). Am J Bot 87:958–963

    PubMed  CAS  Google Scholar 

  • Baumberger N, Ringli C, Keller B (2001) The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana. Genes Dev 15:1128–1139

    PubMed  CAS  Google Scholar 

  • Bernal AJ, Yoo CM, Mutwil M, Jensen JK, Hou G, Blaukopf C, Sørensen I, Blancaflor EB, Scheller HV, Willats WG (2008) Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2, and CSLD4 in tip-growing Arabidopsis cells. Plant Physiol 148:1238–1253

    PubMed  CAS  Google Scholar 

  • Bernhardt C, Tierney ML (2000) Expression of AtPRP3, a proline-rich structural cell wall protein from Arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation. Plant Physiol 122:705–714

    PubMed  CAS  Google Scholar 

  • Bibikova TN, Jacob T, Dahse I, Gilroy S (1998) Localized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana. Development 125:2925–2934

    PubMed  CAS  Google Scholar 

  • Binnie JE, McManus MT (2009) Characterization of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase multigene family of Malus domestica Borkh. Phytochemistry 70:348–360

    PubMed  CAS  Google Scholar 

  • Bisson MMA, Groth G (2010) New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Mol Plant 3:882–889

    PubMed  CAS  Google Scholar 

  • Bisson MMA, Bleckmann A, Allekotte S, Groth G (2009) EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochem J 424:1–6

    PubMed  CAS  Google Scholar 

  • Blume B, Grierson D (1997) Expression of ACC oxidase promoter–GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. Plant J 12:731–746

    PubMed  CAS  Google Scholar 

  • Bouché N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    PubMed  Google Scholar 

  • Bown AW, Shelp BJ (1997) The metabolism and functions of γ-aminobutyric acid. Plant Physiol 115:1–5

    PubMed  CAS  Google Scholar 

  • Buer CS, Wasteneys GO, Masle J (2003) Ethylene modulates root-wave responses in Arabidopsis. Plant Physiol 132:1085–1096

    PubMed  CAS  Google Scholar 

  • Cahill D, Rookes J, Michalczyk A, McDonald K, Drake A (2002) Microtubule dynamics in compatible and incompatible interactions of soybean hypocotyl cells with Phytophthora sojae. Plant Pathol 51:629–640

    Google Scholar 

  • Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535

    PubMed  CAS  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    PubMed  CAS  Google Scholar 

  • Chen BCM, McManus MT (2006) Expression of 1-aminocyclopropane-1-carboxylate (ACC) oxidase genes during the development of vegetative tissues in white clover (Trifolium repens L.) is regulated by ontological cues. Plant Mol Biol 60:451–467

    PubMed  Google Scholar 

  • Chen YF, Shakeel SN, Bowers J, Zhao XC, Etheridge N, Shaller GE (2007) Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis. J Biol Chem 282:24752–24758

    PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu JK (2003) Plant salt tolerance. Top Curr Genet 4:241–270

    Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    CAS  Google Scholar 

  • Choudhury SR, Roy S, Sengupta DN (2008) Characterization of transcriptional profiles of MA-ACS1 and MA-ACO1 genes in response to ethylene, auxin, wounding, cold and different photoperiods during ripening in banana fruit. J Plant Physiol 165:1865–1878

    PubMed  CAS  Google Scholar 

  • Ciardi JA, Tieman DM, Lund ST, Jones JB, Stall RE, Klee HJ (2000) Response to Xanthomonas campestris pv. vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant Physiol 123:81–92

    PubMed  CAS  Google Scholar 

  • Clark DG, Richards C, Hilioti Z, Lind-Iversen S, Brown K (1997) Effect of pollination on accumulation of ACC synthase and ACC oxidase transcripts, ethylene production and flower petal abscission in geranium (Pelargonium x hortorum L.H. Bailey). Plant Mol Biol 34:855–865

    PubMed  CAS  Google Scholar 

  • Clark DG, Gubrium EK, Barrett JE, Nell TA, Klee HJ (1999) Root formation in ethylene insensitive plants. Plant Physiol 121:53–60

    PubMed  CAS  Google Scholar 

  • Clarkson DT (1985) Factors affecting mineral nutrient acquisition by plants. Annu Rev Plant Physiol 36:77–115

    CAS  Google Scholar 

  • Clowes FAL (2000) Pattern in root meristem development in angiosperms. New Phytol 146:83–94

    Google Scholar 

  • Cockcroft S (2001) Signalling roles of mammalian phospholipase D1 and D2. Cell Mol Life Sci 58:1674–1687

    PubMed  CAS  Google Scholar 

  • Crowell EF, Gonneau M, Vernhettes S, Höfte H (2010) Regulation of anisotropic cell expansion in higher plants. C R Biol 333:320–324

    PubMed  CAS  Google Scholar 

  • De Simone S, Oka Y, Inoue Y (2000a) Effect of light on root hair formation in Arabidopsis thaliana phytochrome-deficient mutants. J Plant Res 113:63–69

    Google Scholar 

  • De Simone S, Oka Y, Inoue Y (2000b) Photoperceptive site of the photoinduction of root hairs in lettuce (Lactuca sativa L. cv. Grand Rapids) seedlings under low pH conditions. J Plant Res 113:55–62

    Google Scholar 

  • De Simone S, Oka Y, Nishioka N, Tadano S, Inoue Y (2000c) Evidence of phytochrome mediation in the low-pH-induced root hair formation process in lettuce (Lactuca sativa L. cv. Grand Rapids) seedlings. J Plant Res 113:45–53

    Google Scholar 

  • Dhonukshe P, Laxalt AM, Goedhart J, Gadella TWJ, Munnik T (2003) Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell 15:2666–2679

    PubMed  CAS  Google Scholar 

  • Dixit R, Cyr R (2003) Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J 36:280–290

    PubMed  CAS  Google Scholar 

  • Dolan L (1997) The role of ethylene in the development of plant form. J Exp Bot 48:201–210

    CAS  Google Scholar 

  • Dolan L, Costa S (2001) Evolution and genetics of root hair stripes in the root epidermis. J Exp Bot 52:413–417

    PubMed  CAS  Google Scholar 

  • Dolan L, Duckett CM, Grierson C, Linstead P, Schneider K, Lawson E, Dean C, Poethig S, Roberts K (1994) Clonal relationships and cell patterning in the root epidermis of Arabidopsis. Development 120:2465–2474

    CAS  Google Scholar 

  • Dominguez M, Vendrell M (1994) Effect of ethylene treatment on ethylene production, EFE activity and ACC levels in peel and pulp of banana fruit. Postharv Biol Technol 4:167–177

    CAS  Google Scholar 

  • Favery B, Ryan E, Foreman J, Linstead P, Boudonck K, Steer M, Shaw P, Dolan L (2001) KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes Dev 15:79–89

    PubMed  CAS  Google Scholar 

  • Feldman LJ, Briggs WR (1987) Light-regulated gravitropism in seedling roots of maize. Plant Physiol 83:241–243

    PubMed  CAS  Google Scholar 

  • Finlayson SA, Lee I-J, Morgan PW (1998) Phytochrome B and the regulation of circadian ethylene production in Sorghum. Plant Physiol 116:17–25

    CAS  Google Scholar 

  • Finlayson SA, Lee I-J, Mullet JE, Morgan PW (1999) The mechanism of rhythmic ethylene production in Sorghum. The role of phytochrome B and simulated shading. Plant Physiol 119:1083–1089

    PubMed  CAS  Google Scholar 

  • Foehse D, Jungk A (1983) Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. Plant Soil 74:359–368

    CAS  Google Scholar 

  • Foo E, Ross JJ, Davies NW, Reid JB, Weller JL (2006) A role for ethylene in the phytochrome-mediated control of vegetative development. Plant J 46:911–921

    PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    PubMed  CAS  Google Scholar 

  • Gallie DR, Geisler-Lee J, Chen J, Jolley B (2009) Tissue-specific expression of the ethylene biosynthetic machinery regulates root growth in maize. Plant Mol Biol 69:195–211

    PubMed  CAS  Google Scholar 

  • Galway ME, Masucci JD, Lloyd AM, Walbot V, Davis RW, Schiefelbein JW (1994) The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Dev Biol 166:740–754

    PubMed  CAS  Google Scholar 

  • Gamble RL, Coonfield ML, Schaller GE (1998) Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci USA 95:7825–7829

    PubMed  CAS  Google Scholar 

  • Gamble RL, Qu X, Schaller GE (2002) Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol 128:1428–1438

    PubMed  CAS  Google Scholar 

  • Gardiner J, Collings DA, Harper JDI, Marc J (2003) The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis. Plant Cell Physiol 44:687–696

    PubMed  CAS  Google Scholar 

  • Ge L, Liu JZ, Wong WS, Hsiao WLW, Chong K, Xu ZK, Yang SF, Kung SD, Li N (2000) Identification of a novel multiple environmental factor-responsive 1-aminocyclopropane-1-carboxylate synthase gene, NT-ACS2, from tobacco. Plant Cell Environ 23:1169–1182

    CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    PubMed  CAS  Google Scholar 

  • Goosey L, Palecanda L, Sharrock RA (1997) Differential patterns of expression of the Arabidopsis PHYB, PHYD and PHYE phytochrome genes. Plant Physiol 115:959–969

    PubMed  CAS  Google Scholar 

  • Hackett RM, Ho C-W, Lin Z, Foote HCC, Fray RG, Grierson D (2000) Antisense inhibition of the Nr gene restores normal ripening to the tomato Never-ripe mutant, consistent with the ethylene receptor-inhibition model. Plant Physiol 124:1079–1085

    PubMed  CAS  Google Scholar 

  • Haling RE, Richardson AE, Culvenor RA, Lambers H, Simpson RJ (2010a) Root morphology, root-hair development and rhizosheath formation on perennial grass seedlings is influenced by soil acidity. Plant Soil 335:457–468

    CAS  Google Scholar 

  • Haling RE, Simpson RJ, Delhaize E, Hocking PJ, Richardson AE (2010b) Effect of lime on root growth, morphology and the rhizosheath of cereal seedlings growing in an acid soil. Plant Soil 327:199–212

    CAS  Google Scholar 

  • Hardham AR, Takemoto D, White RG (2008) Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. BMC Plant Biol 8:63

    PubMed  Google Scholar 

  • Hemm MR, Rider SD, Ogas J, Murry DJ, Chapple C (2004) Light induces phenylpropanoid metabolism in Arabidopsis roots. Plant J 38:765–778

    PubMed  CAS  Google Scholar 

  • Hirata T, Kaneko T, Ono T, Nakazato T, Furukawa N, Hasegawa S, Wakabayashi S, Shigekawa M, Chang MH, Romero MF, Hirose S (2003) Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am J Physiol Regul Integr Comp Physiol 284:R1199–R1212

    PubMed  CAS  Google Scholar 

  • Hiwasa K, Kinugasa Y, Amano S, Hashimoto A, Nakano R, Inaba A, Kubo Y (2003) Ethylene is required for both the initiation and progression of softening in pear (Pyrus communis L.) fruit. J Exp Bot 54:771–779

    PubMed  CAS  Google Scholar 

  • Hoekenga OA, Maron LG, Piñeros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743

    PubMed  CAS  Google Scholar 

  • Hofer R-M (1996) Root hairs: cell biology and development. In: Waisei Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 111–126

    Google Scholar 

  • Horst WJ, Wang Y, Eticha D (2010) The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot 106:185–197

    PubMed  CAS  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    PubMed  CAS  Google Scholar 

  • Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10:1321–1332

    PubMed  CAS  Google Scholar 

  • Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33:221–233

    PubMed  CAS  Google Scholar 

  • Hurth MA, Suh SJ, Kretzschmar T, Geis T, Bregante M, Gambale F, Martinoia E, Neuhaus HE (2005) Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast. Plant Physiol 137:901–910

    PubMed  CAS  Google Scholar 

  • Inoue Y, Hirota K (2000) Low pH-induced root hair formation in lettuce (Lactuca sativa L. cv. Grand Rapids) seedlings: determination of root hair-forming site. J Plant Res 113:245–251

    CAS  Google Scholar 

  • Inoue Y, Yamaoka K, Kimura K, Sawai K, Arai T (2000) Effects of low pH on the induction of root hair formation in young lettuce (Lactuca sativa L. cv. Grand Rapids). J Plant Res 113:39–44

    Google Scholar 

  • Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Ikka T, Hirayama T, Shinozaki K, Kobayashi M (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA 104:9900–9905

    PubMed  Google Scholar 

  • Jardim SN (2007) Comparative genomics of grasses tolerant to aluminum. Genet Mol Res 6:1178–1189

    PubMed  CAS  Google Scholar 

  • Johnson EM, Pao LI, Feldman LJ (1991) Regulation of phytochrome message abundance in root caps of maize. Plant Physiol 95:544–550

    PubMed  CAS  Google Scholar 

  • Johnson E, Bradley M, Harberd NP, Whitelam GC (1994) Photoresponses of light-grown phyA mutants of Arabidopsis (Phytochrome A is required for the perception of daylength extensions). Plant Physiol 105:141–149

    PubMed  CAS  Google Scholar 

  • Jonak C, Ökrész L, Bögre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5:415–424

    PubMed  CAS  Google Scholar 

  • Kachroo A, Kachroo P (2007) Salicylic acid-, jasmonic acid- and ethylene-mediated regulation of plant defense signaling. Genet Eng (NY) 28:55–83

    CAS  Google Scholar 

  • Kathiresan A, Nagarathna KC, Moloney MM, Reid DM, Chinnappa CC (1998) Differential regulation of 1-aminocyclopropane-1-carboxylate synthase gene family and its role in phenotypic plasticity in Stellaria longipes. Plant Mol Biol 36:265–274

    PubMed  CAS  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307

    CAS  Google Scholar 

  • Kevany BM, Tieman DM, Taylor MG, Cin VD, Klee HJ (2007) Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J 51:458–467

    PubMed  CAS  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441

    PubMed  CAS  Google Scholar 

  • Kim WT, Yang SF (1994) Structure and expression of cDNAs encoding 1-aminocyclopropane-1-carboxylate oxidase homologs isolated from excised mung bean hypocotyls. Planta 194:223–229

    PubMed  CAS  Google Scholar 

  • Kim YS, Choi D, Lee MM, Lee SH, Kim WT (1998) Biotic and abiotic stress-related expression of 1-aminocyclopropane-1-carboxylate oxidase gene family in Nicotiana glutinosa L. Plant Cell Physiol 39:565–573

    PubMed  CAS  Google Scholar 

  • Kim JH, Lee JH, Joo S, Kim WT (1999) Ethylene regulation of an ERS1 homolog in mung bean seedlings. Physiol Plant 106:90–97

    CAS  Google Scholar 

  • Kim DW, Lee SH, Choi S-B, Won S-K, Heo Y-K, Cho M, Park Y-I, Cho H-T (2006) Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns. Plant Cell 18:2958–2970

    PubMed  CAS  Google Scholar 

  • Kim CM, Park SH, Je BI, Park SH, Park SJ, Piao HL, Eun MY, Dolan L, Han CD (2007) OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. Plant Physiol 143:1220–1230

    PubMed  CAS  Google Scholar 

  • Kinraide TB (1998) Three mechanisms for the calcium alleviation of mineral toxicities. Plant Physiol 118:513–520

    PubMed  CAS  Google Scholar 

  • Kinraide TB (2003) Toxicity factors in acidic forest soils: attempts to evaluate separately the toxic effects of excessive Al3+ and H+ and insufficient Ca2+ and Mg2+ upon root elongation. Eur J Soil Sci 54:323–333

    CAS  Google Scholar 

  • Kiss JZ, Mullen JL, Correll MJ, Hangarter RP (2003) Phytochromes A and B mediate red-light-induced positive phototropism in roots. Plant Physiol 131:1411–1417

    PubMed  CAS  Google Scholar 

  • Kobayashi I, Kobayashi Y, Yamaoka N, Kunoh H (1992) Recognition of a pathogen and a nonpathogen by barley coleoptile cells. III. Responses of microtubules and actin filaments in barley coleoptile cells to penetration attempts. Can J Bot 70:1815–1823

    Google Scholar 

  • Kobayashi Y, Kobayashi I, Funaki Y, Fujimoto S, Takemoto T, Kunoh H (1997) Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. Plant J 11:525–537

    CAS  Google Scholar 

  • Kobayashi Y, Hoekenga OA, Itoh H, Nakashima M, Saito S, Shaff JE, Maron LG, Piñeros MA, Kochian LV, Koyama H (2007) Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol 145:843–852

    PubMed  CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    PubMed  CAS  Google Scholar 

  • Konno M, Ooishi M, Inoue Y (2003) Role of manganese in low-pH-induced root hair formation in Lactuca sativa cv. Grand Rapids seedlings. J Plant Res 116:301–307

    PubMed  CAS  Google Scholar 

  • Konno M, Ooishi M, Inoue Y (2006) Temporal and positional relationships between Mn uptake and low-pH-induced root hair formation in Lactuca sativa cv. Grand Rapids seedlings. J Plant Res 119:439–447

    PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    PubMed  CAS  Google Scholar 

  • Koyama H, Toda T, Yokota S, Zuraida D, Hara T (1995) Effects of aluminum and pH on root growth and cell viability in Arabidopsis thaliana strain Landsberg in hydroponic culture. Plant Cell Physiol 36:201–205

    CAS  Google Scholar 

  • Koyama H, Toda T, Hara T (2001) Brief exposure to low-pH stress causes irreversible damage to the growing root in Arabidopsis thaliana: pectin-Ca interaction may play an important role in proton rhizotoxicity. J Exp Bot 52:361–368

    PubMed  CAS  Google Scholar 

  • Landsberg E-C (1996) Hormonal regulation of iron-stress response in sunflower roots: a morphological and cytological investigation. Protoplasma 194:69–80

    CAS  Google Scholar 

  • Larsen PB, Geisler MJB, Jones CA, Williams KM, Cancel JD (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41:353–363

    PubMed  CAS  Google Scholar 

  • Lee MM, Schiefelbein J (1999) WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 99:473–483

    PubMed  CAS  Google Scholar 

  • Lee JS, Chang W-K, Evans ML (1990) Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays. Plant Physiol 94:1770–1775

    PubMed  CAS  Google Scholar 

  • Lee SC, Lan WZ, Kim BG, Li L, Cheong YH, Pandey GK, Lu G, Buchanan BB, Luan S (2007) A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc Natl Acad Sci USA 104:15959–15964

    PubMed  CAS  Google Scholar 

  • Leliévre JM, Tichit L, Larrigaudiére C, Vendrell M, Pech JC (1995) Cold-induced accumulation of 1-aminocyclopropane 1-carboxylate oxidase protein in Granny-Smith apples. Postharv Biol Technol 5:11–17

    Google Scholar 

  • Leyser HMO, Pickett FB, Dharmasiri S, Estelle M (1996) Mutations in AXR3 gene of Arabidopsis result in altered auxin responses including ectopic expression of the SAUR-ACI promoter. Plant J 10:403–414

    PubMed  CAS  Google Scholar 

  • Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2:1071–1080

    PubMed  CAS  Google Scholar 

  • Liscovitch M, Czarny M, Fiucci G, Tang X (2000) Phospholipase D: molecular and cell biology of a novel gene family. Biochem J 345:401–415

    PubMed  CAS  Google Scholar 

  • Liu Y, Hoffman NE, Yang SF (1985) Promotion by ethylene of the capability to convert 1-aminocyclopropane-1-carboxylic acid to ethylene in preclimacteric tomato and cantaloupe fruits. Plant Physiol 77:407–411

    PubMed  CAS  Google Scholar 

  • Liu J-H, Lee-Tamon SH, Reid DM (1997) Differential and wound-inducible expression of 1-aminocylopropane-1-carboxylate oxidase genes in sunflower seedlings. Plant Mol Biol 34:923–933

    PubMed  CAS  Google Scholar 

  • Liu JP, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399

    PubMed  CAS  Google Scholar 

  • Lloyd C, Chan J (2008) The parallel lives of microtubules and cellulose microfibrils. Curr Opin Plant Biol 11:641–646

    PubMed  CAS  Google Scholar 

  • Lund ST, Stall RE, Klee HJ (1998) Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10:371–382

    PubMed  CAS  Google Scholar 

  • Ma JF (2000) Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol 41:383–390

    PubMed  CAS  Google Scholar 

  • Ma JF, Hiradate S, Matsumoto H (1998) High aluminum resistance in buckwheat. II. Oxalic acid detoxifies aluminum internally. Plant Physiol 117:753–759

    CAS  Google Scholar 

  • Ma Z, Bielenberg DG, Brown KM, Lynch JP (2001) Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ 24:459–467

    CAS  Google Scholar 

  • Magalhaes JV, Liu J, Guimaraes CT, Lana UG, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, Cambridge, UK

    Google Scholar 

  • Masucci JD, Schiefelbein JW (1994) The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin- and ethylene-associated process. Plant Physiol 106:1335–1346

    PubMed  CAS  Google Scholar 

  • Masucci JD, Schiefelbein JW (1996) Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8:1505–1517

    PubMed  CAS  Google Scholar 

  • Masucci JD, Rerie WG, Foreman DR, Zhang M, Galway ME, Marks MD, Schiefelbein JW (1996) The homeobox gene GLABRA 2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development 122:1253–1260

    PubMed  CAS  Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    PubMed  CAS  Google Scholar 

  • Miyake K (1916) The toxic action of aluminum salts upon the growth of the rice plant. J Biol Chem 25:23–28

    CAS  Google Scholar 

  • Molas ML, Kiss JZ, Correll MJ (2006) Gene profiling of the red light signaling pathways in roots. J Exp Bot 12:3217–3229

    Google Scholar 

  • Moog PR, van der Kooij TAW, Brüggemann W, Schiefelbein JW, Kuiper PJ (1995) Responses to iron deficiency in Arabidopsis thaliana: the Turbo iron reductase does not depend on the formation of root hairs and transfer cells. Planta 195:505–513

    PubMed  CAS  Google Scholar 

  • Moussatche P, Klee HJ (2004) Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J Biol Chem 279:48734–48741

    PubMed  CAS  Google Scholar 

  • Munnik T (2001) Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci 6:227–233

    PubMed  CAS  Google Scholar 

  • Nakajima N, Mori H, Yamazaki K, Imaseki H (1990) Molecular cloning and sequence of a complementary DNA encoding 1-aminocyclopropane-1-carboxylate synthase induced by tissue wounding. Plant Cell Physiol 31:1021–1029

    CAS  Google Scholar 

  • Nakano R, Ogura E, Kubo Y, Inaba A (2003) Ethylene biosynthesis in detached young persimmon fruit is initiated in calyx and modulated by water loss from the fruit. Plant Physiol 131:276–286

    PubMed  CAS  Google Scholar 

  • Narukawa M, Kanbara K, Tominaga Y, Aitani Y, Fukuda K, Kodama T, Murayama N, Nara Y, Arai T, Konno M, Kamisuki S, Sugawara F, Iwai M, Inoue Y (2009) Chlorogenic acid facilitates root hair formation in lettuce seedlings. Plant Cell Physiol 50:504–514

    PubMed  CAS  Google Scholar 

  • Narukawa M, Watanabe K, Inoue Y (2010) Light-induced root hair formation in lettuce (Lactuca sativa L. cv. Grand Rapids) roots at low pH is brought by chlorogenic acid synthesis and sugar. J Plant Res 123:789–799

    PubMed  Google Scholar 

  • Neff MN, Fankhauser C, Chory J (2000) Light: an indicator of time and place. Genes Dev 14:257–271

    PubMed  CAS  Google Scholar 

  • Oetiker JH, Olson DC, Shiu OY, Yang SF (1997) Differential induction of seven 1-aminocyclopropane-1-carboxylate synthase genes by elicitor in suspension cultures of the tomato (Lycopersicon esculentum). Plant Mol Biol 34:275–286

    PubMed  CAS  Google Scholar 

  • Ohashi Y, Oka A, Rodrigues-Pousada R, Possenti M, Ruberti I, Morelli G, Aoyama T (2003) Modulation of phospholipid signaling by GLABRA2 in root-hair pattern formation. Science 300:1427–1430

    PubMed  CAS  Google Scholar 

  • Okada K, Shimura Y (1994) Modulation of root growth by physical stimuli. In: Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 665–684

    Google Scholar 

  • Olinevich OV, Khokhlova LP, Raudaskoski M (2002) The microtubule stability increases in abscisic acid-treated and cold-acclimated differentiating vascular root tissues of wheat. J Plant Physiol 159:465–472

    CAS  Google Scholar 

  • Owino WO, Manabe Y, Mathooko FM, Kubo Y, Inaba A (2006) Regulatory mechanisms of ethylene biosynthesis in response to various stimuli during maturation and ripening in fig fruit (Ficus carica L.). Plant Physiol Biochem 44:335–342

    PubMed  CAS  Google Scholar 

  • Oyama T, Shimura Y, Okada K (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11:2983–2995

    PubMed  CAS  Google Scholar 

  • Oyama T, Shimura Y, Okada K (2002) The IRE gene encodes a protein kinase homologue and modulates root hair growth in Arabidopsis. Plant J 30:289–299

    PubMed  CAS  Google Scholar 

  • Panda SK, Baluska F, Matsumoto H (2009) Aluminum stress signaling in plants. Plant Signal Behav 4:592–597

    PubMed  CAS  Google Scholar 

  • Paradez A, Wright A, Ehrhardt DW (2006) Microtubule cortical array organization and plant cell morphogenesis. Curr Opin Plant Biol 9:571–578

    PubMed  CAS  Google Scholar 

  • Percival GC, Baird L (2000) Influence of storage upon light-induced chlorogenic acid accumulation in potato tubers (Solanum tuberosum L.). J Agric Food Chem 48:2476–2482

    PubMed  CAS  Google Scholar 

  • Peterson LR, Farquhar ML (1996) Root hairs: specialized tubular cells extending root surface. Bot Rev 62:1–35

    Google Scholar 

  • Petruzzelli L, Coraggio I, Leubner-Metzger G (2000) Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase. Planta 211:144–149

    PubMed  CAS  Google Scholar 

  • Pierik R, Cuppens MLC, Voesenek LACJ, Visser EJW (2004) Interactions between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in tobacco. Plant Physiol 136:2928–2936

    PubMed  CAS  Google Scholar 

  • Pierik R, Djakovic-Petrovic T, Keuskamp DH, de Wit M, Voesenek LACJ (2009) Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberellin and DELLA proteins in Arabidopsis. Plant Physiol 149:1701–1712

    PubMed  CAS  Google Scholar 

  • Pitts RJ, Cernac A, Esteile M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16:553–560

    PubMed  CAS  Google Scholar 

  • Plett JM, Mathur J, Regan S (2009) Ethylene receptor ETR2 controls trichome branching by regulating microtubule assembly in Arabidopsis thaliana. J Exp Bot 60:3923–3933

    PubMed  CAS  Google Scholar 

  • Poschenrieder C, Gunsé B, Corrales I, Barceló J (2008) A glance into aluminum toxicity and resistance in plants. Sci Total Environ 400:356–368

    PubMed  CAS  Google Scholar 

  • Potocký M, Eliáš M, Profotová B, Novotná Z, Valentová O, Žárský V (2003) Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta 217:122–130

    PubMed  Google Scholar 

  • Qu X, Schaller GE (2004) Requirement of the histidine kinase domain for signal transduction by the ethylene receptor ETR1. Plant Physiol 136:2961–2970

    PubMed  CAS  Google Scholar 

  • Quint M, Barkawi LS, Fan K-T, Cohen JD, Gray WM (2009) Arabidopsis IAR4 modulates auxin response by regulating auxin homeostasis. Plant Physiol 150:748–758

    PubMed  CAS  Google Scholar 

  • Rangel AF, Mobin M, Rao IM, Horst WJ (2005) Proton toxicity interferes with the screening of common bean (Phaseolus vulgaris L.) genotypes for aluminium resistance in nutrient solution. J Plant Nutr Soil Sci 168:607–616

    CAS  Google Scholar 

  • Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5:147–157

    PubMed  CAS  Google Scholar 

  • Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427:858–861

    PubMed  CAS  Google Scholar 

  • Ridge RW (1996) Root hairs: cell biology and development. In: Waisei Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 127–147

    Google Scholar 

  • Rieu I, Cristescu SM, Harren FJM, Huibers W, Voesenek LACJ, Mariani C, Vriezen WH (2005) RP-ACS1, a flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of Rumex palustris, is involved in rhythmic ethylene production. J Exp Bot 56:841–849

    PubMed  CAS  Google Scholar 

  • Roberts JK, Hooks MA, Miaullis AP, Edwards S, Webster C (1992) Contribution of malate and amino acid metabolism to cytoplasmic pH regulation in hypoxic maize root tips studied using nuclear magnetic resonance spectroscopy. Plant Physiol 98:480–487

    PubMed  CAS  Google Scholar 

  • Rottmann WE, Petre GF, Oeller PW, Keller JA, Shen NF, Nagy BP, Tayler LP, Campbell AD, Theologis A (1991) 1-aminocyclopropane-1-carboxylate acid synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J Mol Biol 222:937–961

    PubMed  CAS  Google Scholar 

  • Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    PubMed  CAS  Google Scholar 

  • Ryan P, Delhaize E, Jones D (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    PubMed  CAS  Google Scholar 

  • Sakano K (1998) Revision of biochemical pH-stat: involvement of alternative pathway metabolisms. Plant Cell Physiol 39:467–473

    CAS  Google Scholar 

  • Šamaj J, Ovecka M, Hlavacka A, Lecourieux F, Meskiene I, Lichtscheidl I, Lenart P, Salaj J, Volkmann D, Bögre L, Baluška F, Hirt H (2002) Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J 21:3296–3306

    PubMed  Google Scholar 

  • Sano R, Nagasaka R, Inoue K, Shirano Y, Hayashi H, Shibata D, Sato S, Kato T, Tabata S, Okada K, Wada T (2003) Analysis of bHLH (MYC) genes involved in root hair and trichome differentiation. In: 14th International conference on Arabidopsis research

    Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    PubMed  CAS  Google Scholar 

  • Sawaki Y, Iuchi S, Kobayashi Y, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H (2009) STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol 150:281–294

    PubMed  CAS  Google Scholar 

  • Schiefelbein JW, Somerville C (1990) Genetic control of root hair development in Arabidopsis thaliana. Plant Cell 2:235–243.

    PubMed  CAS  Google Scholar 

  • Schiefelbein JW (2000) Constructing a plant cell. The genetic control of root hair development. Plant Physiol 124:1525–1531

    PubMed  CAS  Google Scholar 

  • Schmidt W, Schikora A (2001) Different pathways are involved in phosphate and iron stress-induced alterations of root epidermal cell development. Plant Physiol 125:2078–2084

    PubMed  CAS  Google Scholar 

  • Schmidt W, Tittel J, Schikora A (2000) Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiol 122:1109–1118

    PubMed  CAS  Google Scholar 

  • Shiu OY, Oetiker JH, Yip WK, Yang SF (1998) The promoter of LE-ACS7, an early flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of the tomato, is tagged by a Sol3 transposon. Proc Natl Acad Sci USA 95:10334–10339

    PubMed  CAS  Google Scholar 

  • Shoji T, Suzuki K, Abe T, Kaneko Y, Shi H, Zhu J-K, Rus A, Hasegawa PM, Hashimoto T (2006) Salt stress affects cortical microtubule organization and helical growth in Arabidopsis. Plant Cell Physiol 47:1158–1168

    PubMed  CAS  Google Scholar 

  • Singh SK, Fischer U, Singh M, Grebe M, Marchant A (2008) Insight into the early steps of root hair formation revealed by the procuste1 cellulose synthase mutant of Arabidopsis thaliana. BMC Plant Biol 8:57

    PubMed  Google Scholar 

  • Somers DE, Quail PH (1995) Phytochrome-mediated light regulation of PHYA- and PHYB-GUS transgenes in Arabidopsis thaliana seedlings. Plant Physiol 107:523–534

    PubMed  CAS  Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    PubMed  CAS  Google Scholar 

  • Takahashi H, Inoue Y (2008) Stage-specific crosstalk between light, auxin, and ethylene during low-pH-induced root hair formation in lettuce (Lactuca sativa L.) seedlings. Plant Growth Regul 56:31–41

    CAS  Google Scholar 

  • Takahashi H, Hirota K, Kawahara A, Hayakawa E, Inoue Y (2003a) Randomization of cortical microtubules in root epidermal cells induces root hair initiation in lettuce (Lactuca sativa L.) seedlings. Plant Cell Physiol 44:350–359

    PubMed  CAS  Google Scholar 

  • Takahashi H, Iwasa T, Shinkawa T, Kawahara A, Kurusu T, Inoue Y (2003b) Isolation and characterization of the ACC synthase genes from lettuce (Lactuca sativa L.), and the involvement in low pH-induced root hair initiation. Plant Cell Physiol 44:62–69

    PubMed  CAS  Google Scholar 

  • Takahashi H, Kawahara A, Inoue Y (2003c) Ethylene promotes the induction by auxin of the cortical microtubule randomization required for low-pH-induced root hair initiation in lettuce (Lactuca sativa L.) seedlings. Plant Cell Physiol 44:932–940

    PubMed  CAS  Google Scholar 

  • Takahashi H, Nakamura A, Harigaya W, Fujigasaki R, Iwasa T, Inoue Y (2010a) Increased expression of ethylene receptor genes during low pH-induced root hair formation in lettuce (Lactuca sativa L.) seedlings: direct and indirect induction by ethylene and auxin, respectively. Plant Root 4:53–64

    CAS  Google Scholar 

  • Takahashi H, Shinkawa T, Nakai S, Inoue Y (2010b) Differential expression of ACC oxidase genes during low-pH-induced root hair formation in lettuce (Lactuca sativa L.) seedlings. Plant Growth Regul 62:137–149

    CAS  Google Scholar 

  • Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya M (2001) Isolation and characterization of rice phytochrome A mutants. Plant Cell 13:521–534

    PubMed  CAS  Google Scholar 

  • Takemoto D, Hardham AR (2004) The cytoskeleton as a regulator and target of biotic interactions in plants. Plant Physiol 136:3864–3876

    PubMed  CAS  Google Scholar 

  • Tanimoto M, Roberts K, Dolan L (1995) Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. Plant J 8:943–948

    PubMed  CAS  Google Scholar 

  • Tieman DM, Taylor MG, Ciardi JA, Klee HJ (2000) The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proc Natl Acad Sci USA 97:5663–5668

    PubMed  CAS  Google Scholar 

  • Trainotti L, Pavanello A, Casadoro G (2005) Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? J Exp Bot 56:2037–2046

    PubMed  CAS  Google Scholar 

  • Tsuchisaka A, Theologis A (2004) Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol 2:2982–3000

    Google Scholar 

  • Van Bruaene N, Joss G, Van Oostveldt P (2004) Reorganization and in vivo dynamics of microtubules during Arabidopsis root hair development. Plant Physiol 136:3905–3919

    PubMed  Google Scholar 

  • Van Der Straeten D, Van Wiemeersch L, Goodman HM, Van Montagu M (1990) Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane-1-carboxylate synthase in tomato. Proc Natl Acad Sci USA 87:4859–4863

    PubMed  Google Scholar 

  • van Tuinen A, Kerckchoffs LHJ, Nagatani A, Kendrick RE, Koornneef M (1995) Far-red light-insensitive, phytochrome A-deficient mutants of tomato. Mol Gen Genet 246:133–141

    PubMed  Google Scholar 

  • Vissenberg K, Fry SC, Verbelen J-P (2001) Root hair initiation is coupled to a highly localized increase of xyloglucan endotransglycosylase action in Arabidopsis roots. Plant Physiol 127:1125–1135

    PubMed  CAS  Google Scholar 

  • Voet-van-Vormizeele J, Groth G (2008) Ethylene controls autophosphorylation of the histidine kinase domain in ethylene receptor ETR1. Mol Plant 1:380–387

    PubMed  CAS  Google Scholar 

  • von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Google Scholar 

  • Vriezen WH, van Rijn CPE, Voesenek LACJ, Mariani C (1997) A homolog of the Arabidopsis thaliana ERS gene is actively regulated in Rumex palustris upon flooding. Plant J 11:1265–1271

    PubMed  CAS  Google Scholar 

  • Wada T, Tachibana T, Shimura Y, Okada K (1997) Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science 277:1113–1116

    Google Scholar 

  • Wang T-W, Arteca RN (1995) Identification and characterization of cDNAs encoding ethylene biosynthetic enzymes from Pelargonium x hortorum cv Snow Mass leaves. Plant Physiol 109:627–636

    PubMed  CAS  Google Scholar 

  • Wang QY, Nick P (2001) Cold acclimation can induce microtubular cold stability in a manner distinct from abscisic acid. Plant Cell Physiol 42:999–1005

    PubMed  CAS  Google Scholar 

  • Wang H, Woodson WR (1989) Reversible inhibition of ethylene action and interruption of petal senescence in carnation flowers by norbornadiene. Plant Physiol 89:434–438

    PubMed  CAS  Google Scholar 

  • Wang X, Cnops G, Vanderhaeghen R, De Block S, Van Montagu M, Van Lijsebettens M (2001) AtCSLD3, a cellulose synthase-like gene important for root hair growth in Arabidopsis. Plant Physiol 126:575–586

    PubMed  CAS  Google Scholar 

  • Wang W, Hall AE, O'Malley R, Bleecker AB (2003) Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci USA 100:352–357

    PubMed  CAS  Google Scholar 

  • Wang C, Li J, Yuan M (2007) Salt tolerance requires cortical microtubule reorganization in Arabidopsis. Plant Cell Physiol 48:1534–1547

    PubMed  CAS  Google Scholar 

  • Watanabe T, Okada K (2005) Interactive effects of Al, Ca and other cations on root elongation of rice cultivars under low pH. Ann Bot 95:379–385

    PubMed  CAS  Google Scholar 

  • Weller JL, Nagatani A, Kendrick RE, Murfet IC, Reid JB (1995) New lv mutants of pea are deficient in phytochrome B. Plant Physiol 108:525–532

    PubMed  CAS  Google Scholar 

  • Weller JL, Schreuder MEL, Smith H, Koornneef M, Kendrick RE (2000) Physiological interactions of the phytochromes A, B1 and B2 in the control of development in tomato. Plant J 24:345–356

    PubMed  CAS  Google Scholar 

  • Weller JL, Beauchamp N, Kerckhoffs LHJ, Platten JD, Reid JB (2001) Interaction of phytochrome A and B in the control of de-etiolation and flowering in pea. Plant J 26:283–294

    PubMed  CAS  Google Scholar 

  • Whitelam GC, Johnson E, Peng J, Carol P, Anderson ML, Cowl JS, Harberd NP (1993) Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5:757–768

    PubMed  CAS  Google Scholar 

  • Wilson AK, Pickett FB, Turner JC, Estelle M (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene, and abscisic acid. Mol Gen Genet 222:377–383

    PubMed  CAS  Google Scholar 

  • Won S-K, Choi S-B, Kumari S, Cho M, Lee SH, Cho H-T (2010) Root hair-specific EXPANSIN B genes have been selected for Graminaceae root hairs. Mol Cells 30:369–376

    PubMed  CAS  Google Scholar 

  • Wu Y, Sharp RE, Durachko DM, Cosgrove DJ (1996) Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins. Plant Physiol 111:765–772

    PubMed  CAS  Google Scholar 

  • Xie ZM, Lei G, Hada W, Tian AG, Zhang JS, Chen SY (2007) Cloning and expression of putative ethylene receptor genes in soybean plant. Prog Nat Sci 17:1152–1160

    CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu J-K (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    PubMed  CAS  Google Scholar 

  • Xu C, Liu C, Guo H, Li Z, Jiang Y, Zhang D, Yuan M (2006) Photosensitive breakage of fluorescence-labeled microtubules and its mechanism. Acta Phys Sin 55:206–210 (in Chinese)

    CAS  Google Scholar 

  • Yadav V, Mallappa C, Gangappa SN, Bhatia S, Chattopadhyay S (2005) A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. Plant Cell 17:1953–1966

    PubMed  CAS  Google Scholar 

  • Yamasaki S, Fujii N, Takahashi H (2000) The ethylene-regulated expression of CS-ETR2 and CS-ERS genes in cucumber plants and their possible involvement with sex expression in flowers. Plant Cell Physiol 41:608–616

    PubMed  CAS  Google Scholar 

  • Yan F, Schubert S, Mengel K (1992) Effect of low root medium pH on net proton release, root respiration, and root growth of corn (Zea mays L.) and broad bean (Vicia faba L.). Plant Physiol 99:415–421

    PubMed  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher-plants. Annu Rev Plant Physiol 35:155–189

    CAS  Google Scholar 

  • Yang C-Y, Chu FH, Wang YT, Chen Y-T, Yang SF, Shaw J-F (2003) Novel broccoli 1-aminocyclopropane-1-carboxylate oxidase gene (Bo-ACO3) associated with the late stage of postharvest floret senescence. J Agric Food Chem 51:2569–2575

    PubMed  CAS  Google Scholar 

  • Yang JL, Zheng SJ, He YF, Matsumoto H (2005) Aluminium resistance requires resistance to acid stress: a case study with spinach that exudes oxalate rapidly when exposed to Al stress. J Exp Bot 56:1197–1203

    PubMed  CAS  Google Scholar 

  • Yang G, Wu L, Chen L, Pei B, Wang Y, Zhan F, Wu Y, Yu Z (2007) Targeted irradiation of shoot apical meristem of Arabidopsis embryos induces long-distance bystander/abscopal effects. Radiat Res 167:298–305

    PubMed  CAS  Google Scholar 

  • Yang TJW, Perry PJ, Ciani S, Pandian S, Schmidt W (2008) Manganese deficiency alters the patterning and development of root hairs in Arabidopsis. J Exp Bot 59:3453–3464

    PubMed  CAS  Google Scholar 

  • Yohannes E, Barnhart DM, Slonczewski JL (2004) pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J Bacteriol 186:192–199

    PubMed  CAS  Google Scholar 

  • Yokota S, Ojima K (1995) Physiological response of root tip of alfalfa to low pH and aluminium stress in water culture. Plant Soil 171:163–165

    CAS  Google Scholar 

  • Yoon IS, Mori H, Kim JH, Kang BG, Imaseki H (1997) VR-ACS6 is an auxin-inducible 1-aminocyclopropane-1-carboxylate synthase gene in mungbean (Vigna radiata). Plant Cell Physiol 38:217–224

    PubMed  CAS  Google Scholar 

  • Yuan H-Y, Yao L-L, Jia Z-Q, Li Y, Li Y-Z (2006) Verticillium dahliae toxin induced alterations of cytoskeletons and nucleoli in Arabidopsis thaliana suspension cells. Protoplasma 229:75–82

    PubMed  CAS  Google Scholar 

  • Zarembinski TI, Theologis A (1993) Anaerobiosis and plant growth hormones induce two genes encoding 1-aminocyclopropane-1-carboxylate synthase in rice (Oryza sativa L.). Mol Biol Cell 4:363–373

    PubMed  CAS  Google Scholar 

  • Zhang W, Kone BC (2002) NF-κB inhibits transcription of the H+-K+-ATPase α2-subunit gene: role of histone deacetylases. Am J Physiol Renal Physiol 283:F904–F911

    PubMed  Google Scholar 

  • Zhang W, Yu L, Zhang Y, Wang X (2005) Phospholipase D in the signaling networks of plant response to abscisic acid and reactive oxygen species. Biochim Biophys Acta 1736:1–9

    PubMed  CAS  Google Scholar 

  • Zheng SJ, Yang JL, He YF, Yu XH, Zhang L, You JF, Shen RF, Matsumoto H (2005) Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. Plant Physiol 138:297–303

    PubMed  CAS  Google Scholar 

  • ZhiMing Y, Bo K, XiaoWei H, ShaoLei L, YouHuang B, WoNa D, Ming C, Hyung-Taeg C, Ping W (2011) Root hair-specific expansins modulate root hair elongation in rice. Plant J 66:725–734

    Google Scholar 

  • Zonia L, Munnik T (2004) Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes. Plant Physiol 134:813–823

    PubMed  CAS  Google Scholar 

  • Zucker M (1963) The influence of light on synthesis of protein and of chlorogenic acid in potato tuber tissue. Plant Physiol 38:575–580

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Takahashi, H. (2012). How Do Lettuce Seedlings Adapt to Low-pH Stress Conditions? A Mechanism for Low-pH-Induced Root Hair Formation in Lettuce Seedlings. In: Khan, N., Nazar, R., Iqbal, N., Anjum, N. (eds) Phytohormones and Abiotic Stress Tolerance in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25829-9_6

Download citation

Publish with us

Policies and ethics