Skip to main content

Stress Hormone Levels Associated with Drought Tolerance vs. Sensitivity in Sunflower (Helianthus annuus L.)

  • Chapter
  • First Online:
Phytohormones and Abiotic Stress Tolerance in Plants

Abstract

Six inbred lines (B59, B67, B71, R432, R419, and HAR4) of sunflower (Helianthus annuus L.) were evaluated in field and laboratory experiments under drought vs. irrigation. In field studies, relative seed yield per hectare and oil yield per hectare were reduced under drought in B59, B67, and R419, but not in R432, B71, or HAR4. In lab studies, germination percentage was reduced under 200 and 400 mM mannitol treatment (which simulates drought) for B59 and under 400 mM mannitol for R432, B71, and HAR4. B59 and B71 were used as typical drought-sensitive and drought-tolerant lines, respectively, for subsequent experiments. Levels of the phytohormones jasmonates (JAs), abscisic acid (ABA), and ABA catabolites were evaluated in dry and germinated seeds from B59 and B71 parent plants grown under drought and irrigation. For dry seeds from plants grown under drought, ABA was the major compound accumulated in B71, whereas 12-OH-JA was the major compound in B59. Germinated seeds of both lines, compared to dry seeds, showed increased 12-oxophytodienoic (OPDA) and decreased ABA. Our results indicate that soil moisture conditions under which parent plants grow affect hormonal content of seeds produced, and JAs and ABA levels during germination are variable. F3 seedling families obtained by crossing R432 (drought-tolerant) and A59 (drought-sensitive) lines were assayed for germination percentage and endogenous levels of salicylic acid (SA), JA, and ABA following drought treatment (400 mM mannitol). Germination percentage showed a typical segregation pattern of quantitative inheritance to drought tolerance in the phenological stage of seedling. Levels of SA and ABA under drought compared to control condition increased in F3 tolerant families but decreased in F3 sensitive families. JA levels changed under drought condition, but the direction of change was not consistent within tolerant or sensitive families. Our results provide important information for strategies to maintain or increase yield of sunflower crops under drought conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu ME, Munne-Bosch S (2008) Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: a case study in field-grown Salvia officinalis L. plants. Environ Exp Bot 64:105–112

    CAS  Google Scholar 

  • Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H (2001) Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel ostatc gene. Plant Physiol 125:1248–1257

    PubMed  CAS  Google Scholar 

  • Agrawal GK, Rakwal R, Jwa NS, Han KS, Agrawal VP (2002) Molecular cloning and mRNA expression analysis of the first rice jasmonate biosynthetic pathway gene allene oxide synthase. Plant Physiol Biochem 40:771–782

    CAS  Google Scholar 

  • Ai L, Li ZH, Xie ZX, Tian XL, Eneji AE, Duan LS (2008) Coronatine alleviates polyethylene glycol-induced water stress in two rice (Oryza sativa L.) cultivars. J Agron Crop Sci 194:360–368

    CAS  Google Scholar 

  • Albuquerque FMC, de Carvalho NM (2003) Effect of type of environmental stress on the emergence of sunflower (Helianthus annuus L.), soybean (Glycine max (L.) Merril) and maize (Zea mays L.) seeds with different levels of vigor. Seed Sci Technol 31:465–467

    Google Scholar 

  • Al-Chaarani GR, Gentzbittel L, Wedzony M, Sarrafi A (2005) Identification of QTLs for germination and seedling development in sunflower (Helianthus annuus L.). Plant Sci 169:221–227

    CAS  Google Scholar 

  • Alibert G, Ranjeva R (1971) Recharches sur les enzymes catalysant la biosyntheses des acid phenoliques chez Quarcus pedunculata (Ehrn): I—formation des series cinnamique et benzoique. FEBS Lett 19:11–14

    PubMed  CAS  Google Scholar 

  • Alibert G, Ranjeva R (1972) Recharches sur les enzymes catalysant la biosyntheses des acid phenoliques chez Quarcus pedunculata (Ehrn): II—localization intercelulaire de la phenyalanin mmonique-lyase, de la cinnamate 4-hydroxylase, et de la “benzoote synthase”. Biochem Biophys Acta 279:282–289

    PubMed  CAS  Google Scholar 

  • Amzallag GN, Nachmias A, Lerner HR (1998) Influence of the mode of salinization on reproductive traits of field-grown progeny in Sorghum bicolor. Isr J Plant Sci 46:9–16

    Google Scholar 

  • Andrade A, Vigliocco A, Alemano S, Miersch O, Abdala G (2005) Endogenous jasmonates and octadecanoids during germination and seedling development: their relation with hypersensitive tomato mutants to abiotic stress. Seed Sci Res 15:309–318

    CAS  Google Scholar 

  • Ashraf M, Mehmood S (1990) Response of four Brassica species to drought stress. Environ Exp Bot 30:93–100

    Google Scholar 

  • Assmann SM (2003) OPEN STOMATA1 opens the door to ABA signalling in Arabidopsis guard cells. Trends Plant Sci 5:151–153

    Google Scholar 

  • Bandurska H, Stroiński A (2005) The effect of salicylic acid on barley response to water deficit. Acta Physiol Plant 27:379–386

    CAS  Google Scholar 

  • Bandurska H, Stroiński A, Kubiś J (2003) The effect of jasmonic acid on the accumulation of ABA, proline and spermidine and its influence on membrane injury under water deficit in two barley genotypes. Acta Physiol Plant 25:279–285

    CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of hormones in plant defense responses. Plant Mol Biol 69:473–488

    PubMed  CAS  Google Scholar 

  • Basal H, Smith CW, Thaxton PS, Hemphill JK (2005) Seedling drought tolerance in upland cotton. Crop Sci 45:766–771

    Google Scholar 

  • Benech Arnold RL, Fenner M, Edwards PJ (1991) Changes in germinability, ABA content and ABA embryonic sensitivity in developing seeds of Sorghum bicolor (Moench) induced by water stress during grain filling. New Phytol 118:339–347

    Google Scholar 

  • Billek G, Schmook FP (1967) Zur biosynthese der gentisinaure. Monatsh Chem 98:1651–1664

    CAS  Google Scholar 

  • Blechert S, Brodschelm W, Holder S, Kammerer L, Kutchan TM, Muller MJ, Xia Z, Zen K (1999) The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci USA 92:4099–4105

    Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for the role of salicylic acid in the oxidative damage generated by ClNa and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    PubMed  CAS  Google Scholar 

  • Böttcher C, Pollmann S (2009) Plant oxylipins: plant responses to 12-oxo-phytodienoic acid are governed by its specific structural and functional properties. FEBS J 276:4693–4704

    PubMed  Google Scholar 

  • Bray EA (2003) Abscisic acid regulation of gene expression during water deficit stress in the era of the Arabidopsis genome. Plant Cell Environ 25:153–161

    Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologist, Rockville, MD, pp 1158–1249

    Google Scholar 

  • Bright J, Desikan R, Tancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    PubMed  CAS  Google Scholar 

  • Browse J (2009) The power of mutants for investigating jasmonate biosynthesis and signaling. Phytochemistry 70:1539–1546

    PubMed  CAS  Google Scholar 

  • Cattivelli L, Rizza F, Badeck F-W, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105:1–14

    Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plants. Funct Plant Biol 30:239–264

    CAS  Google Scholar 

  • Cheng W-H, Endo A, Zhou L, Penney J, Chen H-C, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    PubMed  CAS  Google Scholar 

  • Chimenti CA, Pearson J, Hall AJ (2002) Osmotic adjustment and yield maintenance under drought in sunflower. Field Crop Res 75:235–246

    Google Scholar 

  • Chiwocha S, Abrams S, Ambrose S, Cutler A, Loewen A, Ross A, Kermode A (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 35:405–417

    PubMed  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    PubMed  CAS  Google Scholar 

  • Dathe W, Schindler C, Schneider G, Schmidt J, Porzel A, Jensen E, Yamaguchi I (1991) Cucurbic acid and its 6,7-stereoisomers. Phytochemistry 30:1990–1914

    Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RM, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Métraux JP, Van Loon LC, Dicke M, Pieterse CM (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:923–937

    PubMed  Google Scholar 

  • Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA hydrogen peroxide and nitric oxide signaling in stomatal guard cells. J Exp Bot 55:205–212

    PubMed  CAS  Google Scholar 

  • Devoto A, Turner JG (2003) Regulation of jasmonate mediated plant responses in Arabidopsis. Ann Bot 92:329–337

    PubMed  CAS  Google Scholar 

  • Dobra J, Motyka V, Dobrev P, Malbeck J, Prasil IT, Haisel D, Gaudinova A, Havlova M, Gubis J, Vankova R (2010) Comparison of hormonal response to heat, drought and combined stress in tobacco plants with elevated proline content. J Plant Physiol 167:1360–1370

    PubMed  CAS  Google Scholar 

  • Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gómez-Cadenas A (2005) Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography-electrospray tandem mass spectrometry. J Agric Food Chem 53:8437–8442

    PubMed  CAS  Google Scholar 

  • El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224

    CAS  Google Scholar 

  • Ervin EH, Zhang XZ, Fike JH (2004) Ultraviolet-B radiation damage on Kentucky Bluegrass II: hormone supplement effects. Hort Sci 113:120–128

    Google Scholar 

  • Fan J, Hill L, Crooks C, Doerner P, Lamb C (2009) Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol 150:1750–1761

    PubMed  CAS  Google Scholar 

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica 41:281–284

    CAS  Google Scholar 

  • Feurtado JA, Yang J, Ambrose SJ, Cutler A, Abrams S, Kermode AR (2007) Disrupting abscisic acid homeostasis in western white pine (Pinus monticola) seeds induces dormancy termination and changes in abscisic acid catabolites. J Plant Growth Regul 26:46–54

    CAS  Google Scholar 

  • Finkelstein R, Gampala S, Rock C (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    PubMed  CAS  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-Iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    PubMed  CAS  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    PubMed  Google Scholar 

  • Gao XP, Wang XF, Lu YF, Zhang LY, Shen YY, Liang Z, Zhang DP (2004) Jasmonic acid is involved in the water-stress-induced betaine accumulation in pear leaves plant. Plant Cell Environ 27:497–507

    CAS  Google Scholar 

  • Garbero M, Pedranzani H, Zirulnik F, Molina A, Pérez-Chaca MV, Vigliocco A, Abdala G (2010) Short-term cold stress in two cultivars of Digitaria eriantha: effects on stress-related hormones and antioxidant defense system. Acta Physiol Plant 33:497–507

    Google Scholar 

  • Ghasempour HR, Anderson EM, Gaff DF (2001) Effects of growth substances on the protoplasmic drought tolerance of leave cells of the resurrection grass, Sporobolus stapfianus. Aust J Plant Physiol 28:1115–1120

    CAS  Google Scholar 

  • Gidda SK, Miersch O, Levitin A, Schmidt J, Wasternack C, Varin L (2003) Biochemical and molecular characterization of a hydroxy jasmonate sulfotransferase from Arabidopsis thaliana. J Biol Chem 278:17895–17900

    PubMed  CAS  Google Scholar 

  • Hamada AM (1998) Effects of exogenously added ascorbic acid, thiamin or aspirin on photosynthesis and some related activities of drought-stressed wheat plants. In: Garab G (ed) Photosynthesis: mechanisms and effects. Kluwer, Dordrecht, Netherlands, pp 2581–2584

    Google Scholar 

  • Hamada AM, Al-Hakimi AMA (2001) Salicylic acid versus salinity-drought induced stress on wheat seedlings. Rostl Výr 47:444–450

    CAS  Google Scholar 

  • Hartung W, Scharaut D, Jiang F (2005) Physiology of abscisic acid (ABA) in roots under stress—a review of the relationship between root ABA and radial water and ABA flows. Aust J Agric Res 56:1253–1259

    CAS  Google Scholar 

  • Hashimoto M, Larisa K, Shinichiro S, Toshiko F, Setsuko K, Tomokazu K (2004) A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant Cell Physiol 45:550–559

    PubMed  CAS  Google Scholar 

  • Hassine AB, Lutts S (2010) Differential responses of saltbush Atriplex halimus L. exposed to salinity and water stress in relation to senescing hormones abscisic acid and ethylene. J Plant Physiol 167:1448–1456

    PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12:343–351

    PubMed  CAS  Google Scholar 

  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300

    Google Scholar 

  • Hsu SY, Hsu YT, Kao CH (2003) Ammonium ion, ethylene, and abscisic acid in polyethylene glycol-treated rice leaves. Biol Plant 46:239–242

    CAS  Google Scholar 

  • Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 11:2991–3007

    Google Scholar 

  • Iuchi S, Kobayshi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid, a key in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    PubMed  CAS  Google Scholar 

  • Jacobsen JV, Pearce DW, Poole AT, Pharis R, Mander LN (2002) Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley. Physiol Plant 115:428–441

    PubMed  CAS  Google Scholar 

  • Janowiak F, Maas B, Dörffling K (2002) Importance of abscisic acid for chilling tolerance of maize seedlings. J Plant Physiol 159:635–643

    CAS  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    PubMed  CAS  Google Scholar 

  • Khodary SFA (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int J Agric Biol 6:5–8

    CAS  Google Scholar 

  • Kiani SP, Talia P, Maury P, Grieu P, Heinz R, Perrault A, Nishinakamasu V, Hopp E, Gentzbittel L, Paniego N, Sarrafi A (2007) Genetic-analysis of plant water status and osmotic adjustment in recombinant inbred lines in sunflower under 2 water treatments. Plant Sci 172:773–778

    CAS  Google Scholar 

  • Kikuzaki H, Kayano S, Fukutsuka N, Aoki A, Kasamatsu K, Yamasaki Y, Mitani T, Nakatani N (2004) Abscisic acid related compounds and lignans in prunes (Prunus domestica L.) and their oxygen radical absorbance capacity (ORAC). J Agric Food Chem 52:344–349

    PubMed  CAS  Google Scholar 

  • Klessing DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci 97:8849–8855

    Google Scholar 

  • Koch T, Bandemer K, Boland W (1997) Biosynthesis of cis-jasmone: a pathway for the inactivation and the disposal of the plant stress hormone jasmonic acid to the gas phase? Helv Chim Acta 80:838–850

    CAS  Google Scholar 

  • Koornneef A, Leon-Reyes A, Ritsema T, Verhage A, Den Otter FC, Van Loon LC, Pietersen CM (2008) Kinetics of salicylate-mediated suppression of jasmonate signaling reveals a role for redox modulation. Plant Physiol 147:1358–1363

    PubMed  CAS  Google Scholar 

  • Kramell R, Miersch O, Atzorn R, Parthier B, Wasternack C (2000) Octadecanoid-derived alteration of gene expression and the “oxylipin signature” in stressed barley leaves. Implications for different signaling pathways. Plant Physiol 123:177–187

    PubMed  CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:929–931

    Google Scholar 

  • Kumar L (1999) DNA markers in plant improvement: an overview. Biotechnol Adv 17:143–182

    PubMed  CAS  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kimatura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656

    PubMed  CAS  Google Scholar 

  • Lambrides CJ, Chapman SC, Shorter R (2004) Genetic variation for carbon isotope discrimination in sunflower: association with transpiration efficiency and evidence for cytoplasmic inheritance. Crop Sci 44:1642–1653

    Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and antioxidant system in Agrostis stolonifera: involvement of salicylic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    PubMed  CAS  Google Scholar 

  • Lee KH, Piao HL, Kin H-Y, Choi SM, Jiang E, Hartung W, Hwang I, Kwak JM, Lee I-J, Hwang I (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126:1109–1120

    PubMed  CAS  Google Scholar 

  • Lehmann J, Atzorn R, Brückner C, Reinbothe S, Leopold J, Wasternack C, Parthier B (1995) Accumulation of Jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments. Planta 197:156–162

    CAS  Google Scholar 

  • Leon-Reyes A, Du Y, Koornneef A, Proietti S, Körbes AP, Memelink J, Pieterse CMJ, Ritsema T (2010) Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Mol Plant Microbe Interact 23:187–197

    PubMed  CAS  Google Scholar 

  • Li L, Staden JV, Jager AK (1998) Effect of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. J Plant Growth Regul 25:81–87

    CAS  Google Scholar 

  • Liu XG, Yue YL, Li B, Nie YL, Li W, Wu WH, Ma LG (2007) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315:1712–1716

    PubMed  CAS  Google Scholar 

  • Longenberger PS, Smith CW, Thaxton PS, McMichael BL (2006) Development of a screening method for drought tolerance in cotton seedlings. Crop Sci 46:2104–2110

    Google Scholar 

  • Lu S, Su W, Li H, Guo Z (2009) Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiol Biochem 47:132–138

    PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    PubMed  CAS  Google Scholar 

  • Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant-Microbe Interact 19:123–129

    PubMed  CAS  Google Scholar 

  • Marion-Poll A, Leung J (2006) Abscisic acid synthesis, metabolism and signal transduction. In: Hedden P, Thomas SG (eds) Annual plant reviews: plant hormone signaling. Blackwell, Oxford, UK, pp 1–35

    Google Scholar 

  • McConn M, Creelman RA, Bell E, Mullet JE, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA 94:5473–5477

    PubMed  CAS  Google Scholar 

  • Memelink J, Verpoorte R, Kijn JW (2001) ORCAnization of jasmonate responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219

    PubMed  CAS  Google Scholar 

  • Miersch O, Neumerkel J, Dippe M, Stenzel I, Wasternack C (2008) Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol 177:114–127

    PubMed  CAS  Google Scholar 

  • Mikolajczyk M, Awotunde OS, Muszynska G, Klessig DF, Dobrowolsja G (2000) Osmotic stress induces rapid activation of salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell 12:165–178

    PubMed  CAS  Google Scholar 

  • Muehlbauer GJ, Specht JE, Thomas-Compton MA, Staswick PE, Bernard RL (1988) Near-isogenic lines: a potential resource in the integration of conventional and molecular marker linkage maps. Crop Sci 28:729–735

    Google Scholar 

  • Mur LAJ, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism and oxidative stress leading to cell death. Plant Physiol 140:249–262

    PubMed  CAS  Google Scholar 

  • Mustafa NR, Kim HK, Choi YH, Erkelens C, Lefeber AWM, Spijksma G, van der Heijden R, Verpoorte R (2009) Biosynthesis of salicylic acid in fungus elicited Catharanthus roseus cells. Phytochemistry 70:532–539

    PubMed  CAS  Google Scholar 

  • Mustapha G, Tahar T, Mohamed N (2009) Influence of water stress on seed germination characteristic in invasive Diplotaxis harra (Forssk.) Boiss (Brassicaceae) in arid zone of Tunisia. J Phytol 1:249–254

    Google Scholar 

  • Mwale SS, Hamusimbi C, Mwansa K (2003) Germination emergence and growth of sunflower (Helianthus annuus L.) in response to osmotic seed priming. Seed Sci Technol 31:199–206

    Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Physiol Mol Biol 56:165–185

    CAS  Google Scholar 

  • Nayyar H, Walia DP (2004) Genotypic variation in wheat in response to water stress and abscisic acid-induced accumulation of osmolytes in developing grains. J Agron Crop Sci 190:39–45

    CAS  Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168:807–815

    PubMed  CAS  Google Scholar 

  • Ober ES, Sharp RE (1994) Proline accumulation in maize (Zea mays L.) primary roots at low water potentials (I. Requirement for increased levels of abscisic acid). Plant Physiol 105:981–987

    PubMed  CAS  Google Scholar 

  • Oritani T, Kiyota H (2003) Biosynthesis and metabolism of abscisic acid and related compounds. Nat Prod Rep 20:414–425

    PubMed  CAS  Google Scholar 

  • Papadakis AK, Roubelakis-Angelakis KA (2005) Polyamines inhibit NADPH oxidase-mediated superoxides generation and putrescine prevents programmed cell death syndrome induced by the polyamine oxidase generated hydrogen peroxide. Planta 220:826–837

    PubMed  CAS  Google Scholar 

  • Paran I, Kesseli R, Michelmore R (1991) Identification of restriction fragment length polymorphism and random amplified polymorphic DNA markers linked to downy mildew resistance genes in lettuce using near isogenic lines. Genome 34:1021–1027

    PubMed  CAS  Google Scholar 

  • Pasquer F, Isidore E, Zarn J, Keller B (2005) Specific patterns of changes in wheat gene expression after treatment with three antifungal compounds. Plant Mol Biol 57:693–707

    PubMed  CAS  Google Scholar 

  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramírez I, Peña CH, Machado-Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41:149–158

    CAS  Google Scholar 

  • Pedranzani H, Sierra-de-Grado R, Vigliocco A, Miersch O, Abdala G (2007) Cold and water stresses produce changes in endogenous jasmonates in two populations of Pinus pinaster Ait. Plant Growth Regul 52:111–112

    CAS  Google Scholar 

  • Perales L, Arbona B, Gómez-Cadenas A, Cornejo MJ, Sanz A (2005) A relationship between tolerance to dehydration of rice lines and ability for ABA synthesis under stress. Plant Physiol Biochem 43:786–792

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    PubMed  CAS  Google Scholar 

  • Popova L, Pancheva T, Uzunova A (1997) Salicylic acid: properties, biosynthesis and physiological role. Bulg J Plant Physiol 23:85–93

    CAS  Google Scholar 

  • Qin XQ, Zeevaart JAD (1999) The 9-cis-epoxicarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water stress bean. Proc Natl Acad Sci USA 96:15354–15361

    PubMed  CAS  Google Scholar 

  • Rao MV, Davis RD (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614

    PubMed  CAS  Google Scholar 

  • Rauf S (2008) Breeding sunflower (Helianthus annuus L.,) for drought tolerance. Communic Biom Crop Sci 3:29–44

    Google Scholar 

  • Rauf S, Sadaqat HA (2007) Sunflower (Helianthus annuus L.) germplasm evaluation for drought tolerance. Communic Biom Crop Sci 2:8–16

    Google Scholar 

  • Rauf S, Sadaqat HA (2008) Identification of physiological traits and genotypes combined to high achene yield in sunflower (Helianthus annuus L.) under contrasting water regimes. Aust J Crop Sci 1:23–30

    Google Scholar 

  • Raz V, Bergervoet J, Koornneef M (2001) Sequential steps for developmental arrest in Arabidopsis seeds. Development 128:243–252

    PubMed  CAS  Google Scholar 

  • Reinbothe C, Springer A, Samol I, Reinbothe S (2009) Plant oxylipins: role of jasmonic acid during programmed cell death, defense and leaf senescence. FEBS J 276:4666–4681

    PubMed  CAS  Google Scholar 

  • Ren H, Gao Z, Chen L, Wei K, Liu J, Fan Y, Davies WJ, Jia W, Zhang J (2007) Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissue under water stress. J Exp Bot 58:211–219

    PubMed  CAS  Google Scholar 

  • Reymond P, Bodenhausen N, Van Poecke RM, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147

    PubMed  CAS  Google Scholar 

  • Ribnicky DM, Shulaev V, Raskin I (1998) Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiol 118:565–572

    PubMed  CAS  Google Scholar 

  • Riera M, Valon C, Fenzi F, Giraudat J, Leung J (2005) The genetics of adaptive responses to drought stress: abscisic acid-dependent and abscisic acid-independent signaling components. Physiol Plant 123:111–119

    CAS  Google Scholar 

  • Roche J, Hewezi T, Bouniols A, Gentzbittel L (2009) Real-time PCR monitoring of signal transduction related genes involved in water stress tolerance mechanism of sunflower. Plant Physiol Biochem 47:139–145

    PubMed  CAS  Google Scholar 

  • Sánchez-Díaz M, Tapia C, Antolín MC (2008) Abscisic acid and drought response of Canarian laurel forest tree species growing under controlled conditions. Environ Exp Bot 64:155–161

    Google Scholar 

  • Sasaki-Sekimoto Y, Taki N, Obayashi T (2005) Coordinated activation of metabolic pathways for antioxidants and defense compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J 44:653–668

    PubMed  CAS  Google Scholar 

  • Schachtman DP, Goodger JQ (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13:281–287

    PubMed  CAS  Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, McCarty DR (1997) Specific oxidative cleavage of carotenoids by Vp14 of maize. Science 276:1872–1874

    PubMed  CAS  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    PubMed  CAS  Google Scholar 

  • Sembdner G, Parthier B (1993) Biochemistry, physiological and molecular actions of jasmonates. Annu Rev Plant Physiol Mol Biol 44:569–589

    CAS  Google Scholar 

  • Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (aspirin) and salicylic acid induce multiples tress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    CAS  Google Scholar 

  • Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7:41–48

    PubMed  CAS  Google Scholar 

  • Seo M, Peeters AJM, Koiwai H, Oritani T, Marion-Poll A, Zeevart JAD, Koorneef M, Kamiya Y, Koshiba T (2000) The Arabidopsis aldehyde oxidase 3 (AAO3) gene products catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci USA 97:12908–12913

    PubMed  CAS  Google Scholar 

  • Seo HS, Song JT, Cheong J-J, Lee Y-H, Lee Y-W, Hwang I, Lee JS, Choi YD (2001) Jasmonic acid carboxyl methyl transferase: a key enzyme for jasmonate-regulated plant response. Proc Natl Acad Sci USA 98:4788–4793

    PubMed  CAS  Google Scholar 

  • Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6:365–371

    PubMed  CAS  Google Scholar 

  • Shakirova FM (2007) Role of hormonal system in the manifestation of growth promoting and anti-stress action of salicylic acid. In: Hayat S, Ahman A (eds) Salicylic acid. A plant hormone. Springer, Dordrecht, Netherlands, pp 69–89

    Google Scholar 

  • Shan C, Liang Z (2010) Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci 178:130–139

    CAS  Google Scholar 

  • Sharma YK, Leon J, Raskin I, Davies KR (1996) Ozone induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc Natl Acad Sci USA 93:5099–5104

    PubMed  CAS  Google Scholar 

  • Sharp RE, LeNoble ME, Else MA, Thorne ET, Gherardi F (2000) Endogenous ABA maintains shoot growth in tomato independently of affects on plant water balance evidence for an interaction with ethylene. J Exp Bot 51:1575–1584

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular response to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    PubMed  CAS  Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39:137–141

    CAS  Google Scholar 

  • Singh BN, Mishra RN, Agarwal PK, Goswami M, Nair S, Sopory SK, Reddy MK (2004) A pea chloroplast translation elongation factors that is regulated by abiotic factors. Biochem Biophys Res Commun 320:523–530

    PubMed  CAS  Google Scholar 

  • Sorrells ME (1998) Marker assisted selection: is it practical? In: Kolhi MM, Francis M (eds) International workshop on the application of biotechnologies to wheat breeding. INIA La Estanzuela, Colonia, Uruguay, pp 49–56

    Google Scholar 

  • Spollen WG, LeNoble ME, Sammuels TD, Bernstein N, Sharp RE (2000) Abscisic acid accumulation maintains maize primary roots elongation at low water potentials by restricting ethylene production. Plant Physiol 122:967–976

    PubMed  CAS  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    PubMed  CAS  Google Scholar 

  • Stelmach BA, Müller A, Hennig P, Laudert D, Andert L, Weiler EW (1998) Quantitation of the octadecanoid 12-oxo- phytodienoic acid, a signalling compound in plant mechanotransduction. Phytochemistry 533:319–323

    Google Scholar 

  • Swiatek A, Van Dongen W, Esmans EI, Van Onckelen H (2004) Metabolic fate of jasmonates in tobacco bright yellow-2 cells. Plant Physiol 135:161–172

    PubMed  CAS  Google Scholar 

  • Syeed S, Anjum NA, Nazar R, Iqbal N, Masood A, Khan NA (2011) Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiol Plant 33:877–886

    CAS  Google Scholar 

  • Syvänen AC (2005) Toward genome-wide SNP genotyping. Nat Genet 37:S5–S10

    PubMed  Google Scholar 

  • Szalai G, Horgosi S, Soós V, Majláth I, Balázs E, Janda T (2010) Salicylic acid treatment of pea seeds induces its de novo synthesis. J Plant Physiol 168:213–219

    PubMed  Google Scholar 

  • Szepesi Á, Csiszár J, Gémes K, Horváth E, Horváth F, Simon ML, Tari I (2009) Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increase Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J Plant Physiol 166:914–925

    PubMed  CAS  Google Scholar 

  • Thameur A, Ferchichi A, López-Carbonell M (2011) Quantification of free and conjugated abscisic acid in five genotypes of barley (Hordeum vulgare L.) under water stress conditions. S Afr J Bot 77:222–228

    CAS  Google Scholar 

  • Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, Baker A, Larson TR, Graham IA (2005) Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol 137:835–840

    PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Tierens KFM-J, Broekaert WF (1999) Requirement of functional ethylene-insensitive 2 genes for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121:1093–1101

    PubMed  CAS  Google Scholar 

  • Tomar SMS, Kumar GT (2004) Seedling survivability as a selection criterion for drought tolerance in wheat. Plant Breed 123:392–394

    Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    PubMed  CAS  Google Scholar 

  • Trejo CL, Davies WJ (1991) Drought-induced closure of Phaseolus vulgaris L. stomata precedes leaf water deficit and any increase in xylem ABA concentration. J Exp Bot 42:1507–1515

    CAS  Google Scholar 

  • Turner JG, Ellis Ch, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14:153–164

    Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632–11637

    PubMed  CAS  Google Scholar 

  • Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot 57:201–212

    PubMed  CAS  Google Scholar 

  • Veselov DS, Sharipova GV, Veselov SU, Kudoyarova GR (2008) The effects of NaCl treatment on water relations, growth and ABA content in barley cultivars differing in drought tolerance. J Plant Growth Regul 27:380–386

    CAS  Google Scholar 

  • Vick BA, Zimmerman DC (1983) The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase. Biochem Biophys Res Commun 111:470–77

    PubMed  CAS  Google Scholar 

  • Vlot AC, Liu P-P, Cameron RK, Park S-W, Yang Y, Kumar D, Zhou F, Padukkavidana T, Gustafsson C, Pichersky E, Klessig DF (2008) Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J 56:445–456

    PubMed  CAS  Google Scholar 

  • Wang SY (1999) Methyl jasmonate reduces water stress in strawberry. Plant Growth Regul 18:127–134

    Google Scholar 

  • Wang L, Chen S, Kong W, Li S, Archbold DD (2006) Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biol Technol 41:244–251

    Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    PubMed  CAS  Google Scholar 

  • Wasternack C (2006) Oxylipins: biosynthesis, signal transduction and action. In: Hedden P, Thomas S (eds) Plant hormone signaling. Annual plant reviews. Blackwell, Oxford, UK, pp 185–228

    Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    PubMed  CAS  Google Scholar 

  • Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress response and development. Prog Nucl Acid Res Mol Biol 72:165–221

    CAS  Google Scholar 

  • Wasternack C, Kombrinck E (2010) Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 5:63–77

    PubMed  CAS  Google Scholar 

  • Wildermuth MC (2006) Variations on a theme: synthesis and modifications of plant benzoic acids. Curr Opin Plant Biol 9:288–296

    PubMed  CAS  Google Scholar 

  • Xin ZY, Zhou X, Pilet PE (1997) Level changes of jasmonic, abscisic and indole-3yl-acetic acids in maize under desiccation stress. J Plant Physiol 151:120–124

    CAS  Google Scholar 

  • Xiong L, Shumaker KS, Zhu JK (2002) Cell signaling during cold, drought and salt stress. Plant Cell 14:S165–S183

    PubMed  CAS  Google Scholar 

  • Yalpani N, Leen J, Lawthon MA, Raskin I (1993) Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol 103:315–321

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature or high-salt stress. Plant Cell 6:251–264

    Google Scholar 

  • Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483

    PubMed  CAS  Google Scholar 

  • Zaharia LI, Walker-Simmon M, Rodríguez C, Abrams S (2005) Chemistry of abscisic acid, abscisic acid catabolites and analogs. Plant Growth Regul 24:274–284

    CAS  Google Scholar 

  • Zeevaart JAD (1999) Abscisic acid metabolism and its regulation. In: Hooykaas PJJ, Hall MA, Libbenga KR (eds) Biochemistry and molecular biology of plant hormones. Elsevier Science, Amsterdam, The Netherlands, pp 189–207

    Google Scholar 

  • Zhang J, Davies WJ (1989) Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant Cell Environ 12:73–81

    CAS  Google Scholar 

  • Zhang J, Davies WJ (1990a) Changes in the concentration of ABA in xylem sap as a function of changing soil water will account for changes in leaf conductance. Plant Cell Environ 13:277–285

    CAS  Google Scholar 

  • Zhang J, Davies WJ (1990b) Does ABA in the xylem control the rate of leaf growth in soil-dried maize and sunflower plants. J Exp Bot 41:1125–1132

    CAS  Google Scholar 

  • Zhang J, Schurr U, Davies WJ (1987) Control of stomatal behavior by abscisic acid which apparently originates in roots. J Exp Bot 38:1174–1181

    CAS  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stress. Field Crop Res 97:111–119

    Google Scholar 

  • Zheng Y-Z, Li T (2000) Changes in proline levels and abscisic acid content in tolerant/sensitive cultivars of soybean under osmotic conditions. Soybean Genetics NewsLetter 27. http://www.soygenetics.org/

  • Zhou R, Cutler A, Ambrose SJ, Galka MM, Nelson KM, Squires TM, Loewen MK, Juadhav AS, Ross AR, Taylor DC, Abrams SR (2004) A new abscisic acid catabolic pathway. Plant Physiol 134:361–369

    PubMed  CAS  Google Scholar 

  • Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34

    CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 53:247–273

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermina Abdala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Fernández, C., Alemano, S., Vigliocco, A., Andrade, A., Abdala, G. (2012). Stress Hormone Levels Associated with Drought Tolerance vs. Sensitivity in Sunflower (Helianthus annuus L.). In: Khan, N., Nazar, R., Iqbal, N., Anjum, N. (eds) Phytohormones and Abiotic Stress Tolerance in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25829-9_11

Download citation

Publish with us

Policies and ethics