Skip to main content

The Role of Phytohormones in the Control of Plant Adaptation to Oxygen Depletion

  • Chapter
  • First Online:
Phytohormones and Abiotic Stress Tolerance in Plants

Abstract

Capacity to survive the oxygen deprivation depends on a number of developmental, morphological, and metabolic adaptations in plants. Imposition of hypoxia (deficiency of oxygen) accelerates growth of shoot axial organs and stimulates formation of adventitious roots and aerenchyma in tolerant plant species. As a result, the shoot actively transports oxygen to a flooded root. Simultaneous shifts occur in the metabolism, which are particularly severe under anoxia (total absence of oxygen). A majority of these morphological and metabolic adaptations are strictly regulated by plant hormonal system. Ethylene and gibberellins control enhanced growth, leading to the emergence of shoots of tolerant plants under flooding conditions. Recent findings show Sub1 gene which is important to submergence tolerance in rice to be linked with ethylene and gibberellin signaling. Ethylene is also involved in formation of aerenchyma in oxygen-depleted environment. Auxin regulates adventitious rooting and petiole elongation. Abscisic acid inhibits growth but stimulates metabolic adaptations by induction of anaerobic stress protein gene expression. Complete flooding and particularly total anoxia block ethylene production. Application of exogenous ABA, auxin, and some other growth regulators improves plant survival during oxygen deficiency. Complicated crosstalk between phytohormones under oxygen depletion is discussed as a milestone of plant adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylate

ACO:

ACC oxidase

ACS:

ACC synthase

ADH:

Alcohol dehydrogenase

LOES:

Low-oxygen escape syndrome

References

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    PubMed  CAS  Google Scholar 

  • Bakhtenko EYu, Skorobogatova IV, Karsunkina NP, Platonov AV (2008) Hormonal balance of wheat (Triticum aestivum L.) and oat (Avena sativa L.) under submergence and reparation. Agrochemistry 8:33–41 [In Russian]

    Google Scholar 

  • Banga M, Slaa EJ, Bloom CWPM, Voesenek LACJ (1996) Ethylene biosynthesis and accumulation under drained and submerged conditions. A comparative study of two Rumex species. Plant Physiol 112:229–237

    PubMed  CAS  Google Scholar 

  • Banga M, Bogemann GM, Blom CWPM, Voesenek LACJ (1997) Flooding resistance of Rumex species strongly depends on their response to ethylene: Rapid shoot elongation or foliar senescence. Physiol Plant 99:415–422

    CAS  Google Scholar 

  • Benschop JJ, Jackson MB, Gühl K, Vreeburg RA, Croker SJ, Peeters AJM, Voesenek LACJ (2005) Contrasting interactions between ethylene and abscisic acid in Rumex species differing in submergence tolerance. Plant J 44:756–768

    PubMed  CAS  Google Scholar 

  • Benschop JJ, Bou J, Peeters AJM, Wagemaker N, Gühl K, Ward D, Hedden P, Moritz T, Voesenek LACJ (2006) Long-term submergence-induced elongation in Rumex palustris requires abscisic acid-dependent biosynthesis of gibberellin 1. Plant Physiol 141:1644–1652

    PubMed  CAS  Google Scholar 

  • Bertani A, Brambilla I, Mapelli S, Reggiani R (1997) Elongation growth in the absence of oxygen - the rice coleoptile. Russ J Plant Physiol 44:543–547

    CAS  Google Scholar 

  • Bradford KJ (1983) Involvement of plant growth substances in the alteration of leaf gas exchange of flooded tomato plants. Plant Physiol 73:480–483

    PubMed  CAS  Google Scholar 

  • Bradford KJ, Hsiao TC (1982) Stomatal behavior and water relations of waterlogged tomato plants. Plant Physiol 70:1508–1513

    PubMed  CAS  Google Scholar 

  • Bradford KJ, Hsiao TC, Yang SF (1982) Inhibition of ethylene synthesis in tomato plants subjected to anaerobic root stress. Plant Physiol 70:1503–1507

    PubMed  CAS  Google Scholar 

  • Bragina TV, Martinovich LI, Rodionova NA, Bezborodov AM, Grineva GM (2001) Ethylene-induced activation of xylanase in adventitious roots of maize as a response to the stress effect of root submersion. Prikl Biokhim Mikrobiol 37:722–725 [In Russian]

    PubMed  CAS  Google Scholar 

  • Bragina TV, Rodionova NA, Grinieva GM (2003) Ethylene production and activation of hydrolytic enzymes during acclimation of maize seedlings to partial flooding. Russ J Plant Physiol 50:794–798

    CAS  Google Scholar 

  • Chen X, Pierik R, Peeters AJM, PoorterH VEJW, Huber H, de Kroon H, Voesenek LACJ (2010) Endogenous abscisic acid as a key switch for natural variation in flooding-induced shoot elongation. Plant Physiol 154:969–977

    PubMed  CAS  Google Scholar 

  • Chernys J, Kende H (1996) Ethylene biosynthesis in Regnellidium diphyllum and Marsilea quadrifolia. Planta 200:113–118

    CAS  Google Scholar 

  • Chirkova TV (1988) Plant adaptation to hypoxia and anoxia. Leningrad State University Press, Leningrad

    Google Scholar 

  • Chirkova TV, Gutman TS (1972) On the physiological role of lenticels on the branches of willow and poplar under root anaerobiosis. Sov Plant Physiol 19:352–359

    Google Scholar 

  • Cho H-T, Kende H (1997) Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell 9:1661–1671

    PubMed  CAS  Google Scholar 

  • Cohen E, Kende H (1987) In vivo 1-aminocyclopropane-1-carboxilic acid synthase activity in internodes of deepwater rice. Enhancement by submergence and low oxygen levels. Plant Physiol 84:282–286

    PubMed  CAS  Google Scholar 

  • Cookson C, Osborne DJ (1978) The stimulation of cell extension by ethylene and auxin in aquatic plants. Planta 144:39–47

    CAS  Google Scholar 

  • Costes C, Vartapetian BB (1978) Plant grown in a vacuum: ultrastructure and functions of mitochondria. Plant Sci Lett 11:115–119

    CAS  Google Scholar 

  • Cox MCH, Benschop JJ, Vreeburg RAM, Wagemaker CAM, Moritz T, Peeters AJM, Voesenek LACJ (2004) The roles of ethylene, auxin, abscisic acid, and gibberellin in the hyponastic growth of submerged Rumex palustris petioles. Plant Physiol 136:2948–2960

    PubMed  CAS  Google Scholar 

  • Cox MCH, Peeters AJM, Voesenek LACJ (2006) The stimulating effects of ethylene and auxin on petiole elongation and on hyponastic curvature are independent processes in submerged Rumex palustris. Plant Cell Environ 29:282–290

    PubMed  CAS  Google Scholar 

  • Crawford RMM, Braendle R (1996) Oxygen deprivation stress in a changing environment. J Exp Bot 47:145–159

    CAS  Google Scholar 

  • De Bruxelles GL, Peacock WJ, Dennis ES, Dolferus R (1996) Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis. Pant Physiol 111:381–391

    Google Scholar 

  • Dolferus R, Ellis M, Bruxelles D, Trevaskis B, Hoeren F, Dennis ES, Peacock WJ (1997) Strategies of gene action in Arabidopsis during hypoxia. Ann Bot 79:21–31

    CAS  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    PubMed  CAS  Google Scholar 

  • Drew MC, Jackson MB, Giffard S (1979) Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays L. Planta 147:83–88

    CAS  Google Scholar 

  • Drew MC, He CJ, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5:123–127

    PubMed  CAS  Google Scholar 

  • Ellis MH, Dennis ES, Peacock WJ (1999) Arabidopsis roots and shoots have different mechanisms for hypoxic stress tolerance. Plant Physiol 119:57–64

    PubMed  CAS  Google Scholar 

  • Emel’yanov VV, Kirchikhina NA, Lastochkin VV, Chirkova TV (2003) Hormonal status in wheat and rice seedlings under anoxia. Russ J Plant Physiol 50:827–834

    Google Scholar 

  • Etherington JR (1983) Control of germination and seedling morphology by ethylene: differential responses, related to habitat of Epilobium hirsutum L. and Chamerion angustifolium (L.) (J. Holub). Ann Bot 52:653–658

    Google Scholar 

  • Fabian T, Lorbiecke R, Umeda M, Sauter M (2000) The cell cycle genes cycA1;1 and cdc2Os-3 are coordinately regulated by gibberellin in planta. Planta 211:376–383

    PubMed  CAS  Google Scholar 

  • Fukao T, Bailey-Serres J (2008) Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci USA 105:16814–16819

    PubMed  CAS  Google Scholar 

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034

    PubMed  CAS  Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    CAS  Google Scholar 

  • Greenway H, Gibbs J (2003) Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct Plant Biol 30:999–1036

    CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Ethylene and flooding stress in plants. Plant Physiol Biochem 39:1–9

    CAS  Google Scholar 

  • Gurevich LS (1979) The role of hormonal balance of auxin and ethylene in adaptive reactions of higher plants. Botanical J 64:1600–1614 [In Russian]

    CAS  Google Scholar 

  • He CJ, Drew MC, Morgan PW (1994) Induction of enzymes associated with lysigenous aerenchyma formation in roots of Zea mays during hypoxia or nitrogen starvation. Plant Physiol 105:861–865

    PubMed  CAS  Google Scholar 

  • He CJ, Finlayson SA, Drew MC, Jordan WR, Morgan PW (1996a) Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia. Plant Physiol 112:1679–1685

    PubMed  CAS  Google Scholar 

  • He CJ, Morgan PW, Drew MC (1996b) Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol 112:463–472

    PubMed  CAS  Google Scholar 

  • Hoffmann-Benning S, Kende H (1992) On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol 99:1156–1161

    PubMed  CAS  Google Scholar 

  • Horton RF (1992) Submergence-promoted growth of petioles of Ranunculus pygmaeus Wahl. Aquat Bot 44:23–30

    Google Scholar 

  • Horton RF, Samarakoon AB (1982) Petiole growth in the celery-leaved crowfoot (Ranunculus sceleratus L.): effects of auxin-transport inhibitors. Aquat Bot 13:97–104

    CAS  Google Scholar 

  • Hoson T, Masuda Y, Pilet PE (1992) Auxin content in air and water grown rice coleoptiles. J Plant Physiol 139:685–689

    CAS  Google Scholar 

  • Hoson T, Masuda Y, Pilet PE (1993) Abscisic acid content in air- and water-grown rice coleoptiles. J Plant Physiol 142:593–596

    CAS  Google Scholar 

  • Hwang S-Y, Van Toai TT (1991) Abscisic acid induces anaerobiosis tolerance in corn. Plant Physiol 97:593–597

    PubMed  CAS  Google Scholar 

  • Jackson M (1997) Hormones from roots as signals for the shoots of stressed plants. Trends Plant Sci 2:22–28

    Google Scholar 

  • Jackson MB (2002) Long-distance signalling from roots to shoots assessed: the flooding story. J Exp Bot 53:175–181

    PubMed  CAS  Google Scholar 

  • Jackson MB (2008) Ethylene-promoted elongation: an adaptation to submergence stress. Ann Bot 101:229–248

    PubMed  CAS  Google Scholar 

  • Jackson MB, Campbell DJ (1976) Waterlogging and petiole epinasty in tomato: the role of ethylene and low oxygen. New Phytol 76:21–29

    CAS  Google Scholar 

  • Jackson MB, Fenning TM, Drew MC, Saker LR (1985a) Stimulation of ethylene production and gas-space (aerenchyma) formation in adventitious roots of Zea mays. Planta 165:486–492

    CAS  Google Scholar 

  • Jackson MB, Fenning TM, Jenkins W (1985b) Aerenchyma (gas-space) formation in adventitious roots of rice (Oryza sativa L.) is not controlled by ethylene or small partial pressures of oxygen. J Exp Bot 36:1566–1572

    CAS  Google Scholar 

  • Jackson MB, Waters I, Setter T, Greenway H (1987) Injury to rice plants caused by complete submergence; a contribution by ethylerie (ethene). J Exp Bot 38:1826–1838

    CAS  Google Scholar 

  • Kato-Noguchi H (2000a) Abscisic acid and hypoxic induction of anoxia tolerance in roots of lettuce seedlings. J Exp Bot 51:1939–1944

    PubMed  CAS  Google Scholar 

  • Kato-Noguchi H (2000b) Effects of plant hormones on the activity of alcohol dehydrogenase in lettuce seedlings. J Plant Physiol 157:223–225

    Google Scholar 

  • Katsura N, Suge H (1979) Does ethylene induce elongation of the rice coleoptile through auxin? Plant Cell Physiol 20:1147–1150

    CAS  Google Scholar 

  • Kawase M (1972) Effects of flooding on ethylene concentration in horticultural plants. J Am Soc Hortic Sci 97:584–588

    Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307

    CAS  Google Scholar 

  • Kende H, van der Knaap E, Cho H-T (1998) Deepwater rice: A model plant to study stem elongation. Plant Physiol 118:1105–1110

    PubMed  CAS  Google Scholar 

  • Kennedy RA, Rumpho ME, Fox TC (1992) Anaerobic metabolism in plants. Plant Physiol 100:1–6

    PubMed  CAS  Google Scholar 

  • Kim JH, Cho HT, Kende H (2000) α-Expansins in the semiaquatic ferns Marsilea quadrifolia and Regnellidium diphyllum: evolutionary aspects and physiological role in rachis elongation. Planta 212:85–92

    PubMed  CAS  Google Scholar 

  • Ku HS, Suge H, Rappaport L, Pratt HK (1970) Stimulation of rice coleoptile growth by ethylene. Planta 90:333–339

    CAS  Google Scholar 

  • Laan P, Berrefoets MJ, Lythe S, Armstrong W, Blom CWPM (1989) Root morphology and aerenchyma formation as indicators of the flood-tolerance of Rumex species. J Ecol 11:693–703

    Google Scholar 

  • Lee Y, Kende H (2001) Expression of beta-expansins is correlated with internodal elongation in deepwater rice. Plant Physiol 127:645–654

    PubMed  CAS  Google Scholar 

  • Lee Y, Kende H (2002) Expression of α-expansin and expansin-like genes in deepwater rice. Plant Physiol 130:1396–1405

    PubMed  CAS  Google Scholar 

  • Lee TM, Lur H, Shieng Y, Chu C (1994) Levels of abscisic acid in anoxia- or ethylene-treated rice (Oryza sativa L.) seedlings. Plant Sci 95:125–131

    CAS  Google Scholar 

  • Lee TM, Shieng Y, Chou CH (1996) Abscisic acid inhibits shoot elongation of Scripus mucronatus. Physiol Pant 97:1–4

    CAS  Google Scholar 

  • Lee Y, Choi D, Kende H (2001) Expansins: ever-expanding numbers and functions. Curr Opin Plant Biol 4:527–532

    PubMed  CAS  Google Scholar 

  • Lee Y, Jung JW, Kim SK, Hwang YS, Lee JS, Kim SH (2008) Ethylene-induced opposite redistributions of calcium and auxin are essential components in the development of tomato petiolar epinastic curvature. Plant Physiol Biochem 46:685–693

    PubMed  CAS  Google Scholar 

  • Lorbiecke R, Sauter M (1999) Adventitious root growth and cell-cycle induction in deepwater rice. Plant Physiol 119:21–29

    PubMed  CAS  Google Scholar 

  • Loreti E, Yamaguchi J, Alpi A, Perata P (2003) Gibberellins are not required for rice germination under anoxia. Plant Soil 253:137–143

    CAS  Google Scholar 

  • Mapelli S, Locatelli F (1995) The relation of rice coleoptiles, auxin-binding protein, and protein synthesis to anoxia and indoleacetic acid. Russ J Plant Physiol 42:624–629

    CAS  Google Scholar 

  • Mapelli S, Rocchi P, Bertani A (1986) ABA and IAA in rice seedlings under anaerobic conditions. Biol Plant 28:57–61

    CAS  Google Scholar 

  • Mapelli S, Lombardi L, Bertani A (1993) The effect of growth substances on rice germination and growth under anoxia. Plant Physiol (Life Sci Adv) 12:9–15

    Google Scholar 

  • Mapelli S, Locatelli F, Bertani A (1995) Effect of anaerobic environment on germination and growth of rice and wheat: endogenous levels of ABA and IAA. Bulg J Plant Physiol 21:33–41

    CAS  Google Scholar 

  • Mekhedov SL, Kende H (1996) Submergence enhances expression of a gene encoding 1-aminocyclopropane-1-carboxylate oxidase in deepwater rice. Plant Cell Physiol 37:531–537

    PubMed  CAS  Google Scholar 

  • Menyajlo LN, Shulgina GG (1978) The effect of bog reclamation on the hormone metabolism of pine. Sov Plant Physiol 25:123–127

    Google Scholar 

  • Metraux JP, Kende H (1983) The role of ethylene in the growth response of submerged deep water rice. Plant Physiol 72:444–446

    Google Scholar 

  • Metraux JP, Kende H (1984) The cellular basis of elongation response in submerged water rice. Planta 160:73–77

    Google Scholar 

  • Miyoshi K, Sato T (1997) The effect of kinetin and gibberellin on the germination of dehusked seeds of Indica and Japonica rice (Oryza sativa L.) under anaerobic and aerobic conditions. Ann Bot 80:479–483

    CAS  Google Scholar 

  • Mühlenbock P, Plaszczyca M, Plaszczyca M, Mellerowicz E, Karpinski S (2007) Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATING DISEASE1. Plant Cell 19:3819–3830

    Google Scholar 

  • Musgrave A, Walters J (1974) Ethylene and buoyancy control rachis elongation of semi-aquatic fern Regnillidium diphyllum. Planta 121:51–56

    CAS  Google Scholar 

  • Musgrave A, Jackson MB, Ling E (1972) Callitriche stem elongation is controlled by ethylene and gibberellin. Nat New Biol 238:93–96

    Google Scholar 

  • Neuman DS, Smit BA (1991) The influence of leaf water status and ABA on leaf growth and stomata of Phaseolus seedling with hypoxic root. J Exp Bot 42:1499–1506

    CAS  Google Scholar 

  • Neuman DS, Rood SB, Smit BA (1990) Does cytokinin transport from root-to-shoot in the xylem sap regulate leaf responses to root hypoxia? J Exp Bot 41:1325–1333

    CAS  Google Scholar 

  • Olson DC, Oetiker JH, Yang SF (1995) Analysis of Le-ACS, a 1-aminocyclopropane-1-carboxylic acid synthase gene expressed during flooding in the roots of tomato plants. J Biol Chem 270:14056–14061

    PubMed  CAS  Google Scholar 

  • Ookawara R, Satoh S, Yoshioka T, Ishizawa K (2005) Expression of alpha-expansin and xyloglucan endotransglucosylase/hydrolase genes associated with shoot elongation enhanced by anoxia, ethylene and carbon dioxide in arrowhead (Sagittaria pygmaea Miq.) tubers. Ann Bot 96:693–702

    PubMed  CAS  Google Scholar 

  • Pearce DME, Jackson MB (1991) Comparison of growth responses of barnyard grass (Echinochloa oryzoides) and rice (Oryza sativa) to submergence, ethylene, carbon dioxide and oxygen shortage. Ann Bot 68:201–209

    Google Scholar 

  • Pearce DME, Hall KC, Jackson MB (1992) The effects of oxygen, carbon dioxide and ethylene on ethylene biosynthesis in relation to shoot extension in seedlings of rice (Oryza sativa) and barnyard grass (Echinochloa oryzoides). Ann Bot 69:441–447

    CAS  Google Scholar 

  • Peng H-P, Lin T-Y, Wang N-N, Shih M-C (2005) Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia. Plant Mol Biol 58:15–25

    PubMed  CAS  Google Scholar 

  • Perata P, Voesenek LACJ (2007) Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trends Plant Sci 12:43–46

    PubMed  CAS  Google Scholar 

  • Raskin I, Kende H (1983) Regulation of growth in rice seedlings. J Plant Growth Regul 2:193–203

    CAS  Google Scholar 

  • Raskin I, Kende H (1984) Role of gibberellin in the growth response of submerged deep water rice. Plant Physiol 76:947–950

    PubMed  CAS  Google Scholar 

  • Ridge I (1987) Ethylene and growth control in amphibious plants. In: Crawford RMM (ed) Plant life in aquatic and amphibious habitats. Blackwell Scientific Publications, Oxford, pp 53–76

    Google Scholar 

  • Ridge I, Osborne DJ (1989) Wall extensibility, wall pH and tissue osmolality—significance for auxin and ethylene-enhanced petiole growth in semi-aquatic plants. Plant Cell Environ 12:383–393

    CAS  Google Scholar 

  • Rieu I, Cristescu SM, Harren FJM, Huibers W, Voesenek LACJ, Mariani C, Vriezen WH (2005) Rp-ACS1, a flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of Rumex palustris, is involved in rhythmic ethylene production. J Exp Bot 56:841–849

    PubMed  CAS  Google Scholar 

  • Rijnders JGHM, Barendse GWM, Blom CWPM, Voesenek LACJ (1996) The contrasting role of auxin in submergence-induced petiole elongation in two species from frequently flooded wetlands. Physiol Plant 96:467–473

    CAS  Google Scholar 

  • Rijnders JGHM, Yang Y-Y, Kamiya Y, Takahashi N, Barendse GWM, Blom CWPM, Voesenek LACJ (1997) Ethylene enhances gibberellin levels and petiole sensitivity in flooding-tolerant Rumex palustris but not in flooding-intolerant R. acetosa. Planta 203:20–25

    CAS  Google Scholar 

  • Rudolf W, Knacker T, Schaub H (1987) The effect of low oxygen concentration on the cytokinin content of the C4 plant Amaranthus paniculatus L. Biochem Physiol Pflanz 182:203–211

    CAS  Google Scholar 

  • Saab IN, Sachs MM (1996) A flooding-induced xyloglucan endo-transglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma. Plant Physiol 112:385–391

    PubMed  CAS  Google Scholar 

  • Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura S, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M (2007) Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8′-hydroxylase in rice. Plant Cell Physiol 48:287–298

    PubMed  CAS  Google Scholar 

  • Samarakoon AB, Horton RF (1983) Petiole growth in Ranunculus sceleratus: the role of growth regulators and the leaf blade. Can J Bot 61:3326–3331

    CAS  Google Scholar 

  • Samarakoon AB, Horton RF (1984) Petiole growth in Ranunculus sceleratus L.: ethylene synthesis and submergence. Ann Bot 54:263–270

    CAS  Google Scholar 

  • Samarakoon AB, Woodrow L, Horton RF (1985) Ethylene- and submergence-promoted growth in Ranunculus sceleratus L. petioles: the effect of cobalt ions. Aquat Bot 21:33–41

    CAS  Google Scholar 

  • Satler SO, Kende H (1985) Ethylene and the growth of rice seedlings. Plant Physiol 79:194–198

    PubMed  CAS  Google Scholar 

  • Sauter M (2000) Rice in deep water: “How to take heed against a sea of troubles”. Naturwissenschaften 87:289–303

    PubMed  CAS  Google Scholar 

  • Sauter M, Kende H (1992) Gibberellin-induced growth and regulation of the cell division cycle in deepwater rice. Planta 188:362–368

    CAS  Google Scholar 

  • Sauter M, Mekhedov SL, Kende H (1995) Gibberellin promotes histone H1 kinase activity and the expression of cdc2 and cyclin genes during the induction of rapid growth in deepwater rice internodes. Plant J 7:623–632

    PubMed  CAS  Google Scholar 

  • Smit BA, Neuman DS, Stachowiak ML (1990) Root hypoxia reduces leaf growth. Role of factors in the transpiration stream. Plant Physiol 92:1021–1028

    PubMed  CAS  Google Scholar 

  • Smits AJM, Schmitz GHW, Vandervelde G, Voesenek LACJ (1995) Influence of ethanol and ethylene on the seed germination on three nymphaeoid water plants. Freshwater Biol 34:39–46

    Google Scholar 

  • Smulders MJM, Horton RF (1991) Ethylene promotes elongation growth and auxin promotes radial growth in Ranunculus sceleratus petioles. Plant Physiol 96:806–811

    PubMed  CAS  Google Scholar 

  • Suge H (1985) Ethylene and gibberellin: regulation of internodal elongation and nodal root development in floating rice. Plant Cell Physiol 26:607–614

    CAS  Google Scholar 

  • Summers JE, Jackson MB (1996) Anaerobic promotion of stem extension in Potamogeton pectinatus. Roles for carbone dioxide, acidification and hormones. Physiol Plant 96:615–622

    CAS  Google Scholar 

  • Summers JE, Voesenek LACJ, Blom CWPM, Lewis MJ, Jackson MB (1996) Potamogeton pectinatus is constitutively incapable of synthesizing ethylene and lacks 1-aminocyclopropane-1-carboxylic acid oxidase. Plant Physiol 111:901–908

    PubMed  CAS  Google Scholar 

  • van der Knaap E, Jagoueix S, Kende H (1997) Expression of an ortholog of replication protein A1 (RPA1) is induced by gibberellin in deepwater rice. Proc Natl Acad Sci USA 94:9979–9983

    PubMed  Google Scholar 

  • van der Knaap E, Song WY, Ruan DL, Sauter M, Ronald PC, Kende H (1999) Expression of a gibberellin-induced leucine-rich repeat receptor-like protein kinase in deepwater rice and its interaction with kinase-associated protein phosphatase. Plant Physiol 120:559–569

    PubMed  Google Scholar 

  • van der Knaap E, Kim JH, Kende H (2000) A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol 122:695–704

    PubMed  Google Scholar 

  • Van Der Straeten D, Zhou Z, Prinsen E, Van Onckelen HA, Van Montagu MC (2001) A comparative molecular-physiological study of submergence response in lowland and deepwater rice. Plant Physiol 125:955–968

    Google Scholar 

  • Vartapetian BB, Jackson BM (1997) Plant adaptations to anaerobic stress. Ann Bot 79:3–20

    CAS  Google Scholar 

  • Vartapetian BB, Andreeva IN, Kozlova GI (1976) The resistance to anoxia and the mitochondrial fine structure of rice seedlings. Protoplasma 88:215–224

    Google Scholar 

  • Vidoz ML, Loreti E, Mensuali A, Alpi A, Perata P (2010) Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J 63:551–562

    PubMed  CAS  Google Scholar 

  • Visser EJW, Heijink CJ, van Hout KJGM, Voesenek LACJ, Barendse GWM, Blom CWPM (1995) Regulatory role of auxin in adventitious root formation in two spices of Rumex, differing in their sensitivity to waterlogging. Physiol Plant 93:116–122

    CAS  Google Scholar 

  • Visser EJW, Bogemann GM, Blom CWPM, Voesenek LACJ (1996a) Ethylene accumulation in waterlogged Rumex plants promotes formation of adventitious roots. J Exp Bot 47:403–410

    CAS  Google Scholar 

  • Visser EJW, Cohen JD, Barendse GWM, Blom CWPM, Voesenek LACJ (1996b) An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm. Plant Physiol 112:1687–1692

    PubMed  CAS  Google Scholar 

  • Visser EJW, Nabben RHM, Blom CWPM, Voesenek LACJ (1997) Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentrations. Plant Cell Environ 20:647–653

    CAS  Google Scholar 

  • Voesenek LACJ, Harren FJM, Bogemann GM, Blom CWPM, Reuss J (1990a) Ethylene production and petiole growth in Rumex plants induced by soil waterlogging: the application of a continuous flow system and a laser driven intracavity photoacoustic detection system. Plant Physiol 94:1071–1077

    PubMed  CAS  Google Scholar 

  • Voesenek LACJ, Perik PJM, Blom CWPM, Sassen MMA (1990b) Petiole elongation in Rumex species during submergence and ethylene exposure: The elongative contributions of cell division and cell expansion. J Plant Growth Regul 9:13–17

    CAS  Google Scholar 

  • Voesenek LACJ, Banga M, Thier RH, Mudde CM, Harren FJM, Barendse GWM, Blom CWPM (1993) Submergence-induced ethylene synthesis entrapment and growth in two plant species with contrasting flooding resistances. Plant Physiol 103:783–789

    PubMed  CAS  Google Scholar 

  • Voesenek LACJ, Vriezen WH, Smekens MJE, Huitink FHM, Bogemann GM, Blom CWPM (1997) Ethylene sensitivity and response sensor expression in petioles of Rumex species at low O2 and high CO2 concentrations. Physiol Plant 114:1501–1509

    CAS  Google Scholar 

  • Vreeburg RA, Benschop JJ, Peeters AJM, Colmer TD, Ammerlaan AH, Staal M, Elzenga TM, Staals RH, Darley CP, McQueen-Mason SJ, Voesenek LACJ (2005) Ethylene regulates fast apoplastic acidification and expansin A transcription during submergence-induced petiole elongation in Rumex palustris. Plant J 43:597–610

    PubMed  CAS  Google Scholar 

  • Vriezen WH, van Rijn CPE, Voesenek LACJ, Mariani C (1997) A homolog of the Arabidopsis thaliana ERS gene is actively regulated in Rumex palustris upon flooding. Plant J 11:1265–1271

    PubMed  CAS  Google Scholar 

  • Walters J, Osborne DJ (1979) Ethylene and auxin-induced cell growth in relation to auxin transport and metabolism and ethylene production in the semi-aquatic plant, Regnellidium diphyllum. Planta 146:309–317

    CAS  Google Scholar 

  • Wample RL, Reid DM (1979) The role of endogenous auxins and ethylene in the formation of adventitious roots and hypocotyl hypertrophy in flooded sunflower plants (Helianthus annus L.). Physiol Plant 45:219–226

    CAS  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    PubMed  CAS  Google Scholar 

  • Yemelyanov VV, Chirkova TV (1996) Free forms of phytohormones in plants with different tolerance to the lack of oxygen under aeration and anaerobiosis. Bulletin of St. Petersburg University. Ser.3. (Biology) Iss. 2:73-81 [in Russian]

    Google Scholar 

  • Zarembinski TI, Theologis A (1997) Expression characteristics of Os-ACS1 and Os-ACS2, two members of the 1-aminocyclopropane-1-carboxylate synthase gene family in rice (Oryza sativa L. cv. Habiganj Aman II) during partial submergence. Plant Mol Biol 33:71–77

    PubMed  CAS  Google Scholar 

  • Zhang J, Davies WJ (1987) ABA in roots and leaves of flooded pea plants. J Exp Bot 38:649–659

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria F. Shishova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Yemelyanov, V.V., Shishova, M.F. (2012). The Role of Phytohormones in the Control of Plant Adaptation to Oxygen Depletion. In: Khan, N., Nazar, R., Iqbal, N., Anjum, N. (eds) Phytohormones and Abiotic Stress Tolerance in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25829-9_10

Download citation

Publish with us

Policies and ethics