Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 275))

  • 710 Accesses

Abstract

Data processing not only in physics and engineering, but also in medicine, biology, sociology, economics, sport, art, and military affairs, amounts to the different statements of identification problems. Fuzzy logic is mistakenly perceived by many specialists in mathematical simulation as a mean of only approximate decisions making in medicine, economics, art, sport and other different from physics and engineering humanitarian domains, where the high level of accuracy is not required. Therefore, one of the main goals of the authors is to show that it is possible to reach the accuracy of modeling, which does not yield to strict quantitative correlations, by tuning fuzzy knowledge bases. Only objects with discrete outputs for the direct inference and discrete inputs for the inverse inference were considered in the previous chapters. Such a problem corresponds to the problem of automatic classification arising in particular from medical and technical diagnosis. The main idea which the authors strive to render is that while tuning the fuzzy knowledge base it is possible to identify nonlinear dependencies with the necessary precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Butenin, N.V., Neimark, Y.I., Fufaev, N.A.: Introduction to Nonlinear Oscillation Theory, p. 384. Nauka, Moscow (1987) (in Russian)

    Google Scholar 

  2. Aleksakov, G.N., Gavrilin, V.V., Fedorov, V.A.: Structural Models of Dynamic processes, p. 62. MIFI, Moscow (1989) (in Russian)

    Google Scholar 

  3. Chemodanov, B.K. (ed.): Mathematical principles of Automatic Control Theory, vol. I, p. 366. Vysshaja Shkola, Moscow (1977) (in Russian)

    Google Scholar 

  4. Rotshtein, A.P., Shtovba, S.D.: Managing a Dynamic System by means of a Fuzzy Knowledge Base. Automatic Control and Computer Sciences 35(2), 16–22 (2001)

    Google Scholar 

  5. Nakano, E.: Introduction to Robotics, p. 334. Mir, Moscow (1988) (in Russian)

    Google Scholar 

  6. Gorelik, V.A., Ushakov, I.A.: Operations Research, p. 288. Machine building, Moscow (1986) (in Russian)

    MATH  Google Scholar 

  7. Ryzgikov, Y.I.: Inventory Control, p. 364. Nauka, Moscow (1969) (in Russian)

    Google Scholar 

  8. Rubalskiy, G.B.: Inventory Control under Random Demand, p. 160. Sov. Radio, Moscow (1977) (in Russian)

    Google Scholar 

  9. Petrovich, D., Sweeney, E.: Knowledge-based Approach to Treating Uncertainty in Inventory Control. Computer Integrated Manufacturing Systems 7(3), 147–152 (1994)

    Article  Google Scholar 

  10. Cox, D.E.: Fuzzy Logic for Business and Industry, p. 280. Charles River Media, Inc., Rockland (1995)

    Google Scholar 

  11. Bojadziev, G., Bojadziev, M.: Fuzzy Logic for Business, Finance and Management, p. 252. World Scientific Publishing (1997)

    Google Scholar 

  12. Venkatraman, R., Venkatraman, S.: Rule-based System Application for a Technical Problem in Inventory Issue. Advanced Engineering Informatics 14(2), 143–152 (2000)

    Google Scholar 

  13. Rotshtein, A.P., Rakytyanska, H.B.: Inventory Control as an Identification Problem based on Fuzzy Logic. Cybernetics and Systems Analysis 42(3), 411–419 (2006)

    Article  MATH  Google Scholar 

  14. Rotshtein, A.: Intellectual Technologies of Identification: Fuzzy Sets, Genetic Algorithms, Neural Nets, p. 320. UNIVERSUM, Vinnitsa (1999) (in Russian), http://matlab.exponenta.ru/fuzzylogic/book5/index.php

    Google Scholar 

  15. Tsypkin, Y.Z.: Information Theory of Identification, p. 320. Nauka, Moscow (1984) (in Russian)

    MATH  Google Scholar 

  16. Terano, T., Asai, K., Sugeno, M. (eds.): Applied Fuzzy Systems. Omsya, Tokyo (1989); Mir, Moscow (1993) (in Russian)

    MATH  Google Scholar 

  17. Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to Approximate Reasoning. Part 1-3. Information Sciences 8, 199–251 (1975); 9, 301 – 357, 43 – 80 (1976)

    Article  MathSciNet  Google Scholar 

  18. Ivachnenko, A.G., Lapa, V.G.: Forecasting of Random Processes, p. 416. Kiev, Naukova dumka (1971) (in Russian)

    Google Scholar 

  19. Markidakis, S., Wheelwright, S.C., Hindman, R.J.: Forecasting: Methods and Applications, 3rd edn., p. 386. John Wiley & Sons, USA (1998)

    Google Scholar 

  20. Mingers, J.: Rule Induction with Statistical Data – A Comparison with Multiple Regression. J. Operation Research Society 38, 347–351 (1987)

    Google Scholar 

  21. Willoughby, K.A.: Determinants of Success in the CFL: a Logistic Regression Analysis. In: Proc. of National Annual Meeting to the Decision Sciences, vol. 2, pp. 1026–1028. Decision Sci. Inst., Atlanta (1997)

    Google Scholar 

  22. Glickman, M.E., Stern, H.S.: A State-space Model for National Football League Scores. Journal of the American Statistical Association 93, 25–35 (1998)

    Article  MATH  Google Scholar 

  23. Stern, H.: On Probability of Winning a Football Game. The American Statistician 45, 179–183 (1991)

    Article  Google Scholar 

  24. Dixan, M.I., Coles, S.C.: Modelling Association Football Scores and Inefficiencies in the Football betting Market. Applied Statistics 46(2), 265–280 (1997)

    Article  Google Scholar 

  25. Koning, R.H.: Balance in Competition in Dutch Soccer. The Statistician 49, 419–431 (2000)

    Article  Google Scholar 

  26. Rue, H., Salvensen, O.: Prediction and Retrospective Analysis of Soccer Matches in a League. The Statistician 49, 399–418 (2000)

    Article  Google Scholar 

  27. Walczar, S., Krause, J.: Chaos, Neural networks and Gaming. In: Proc. of Third Golden West International Conference, Intelligent Systems, pp. 457–466. Kluwer, Las Vegas (1995)

    Google Scholar 

  28. Purucker, M.C.: Neural Network Quarterbacking. IEEE Potentials 15(3), 9–15 (1996)

    Article  Google Scholar 

  29. Condon, E.M., Colden, B.L., Wasil, E.A.: Predicting the Success of Nations at the Summer Olympic using Neural Networks. Computers & Operations Research 26(13), 1243–1265 (1999)

    Article  MATH  Google Scholar 

  30. Galasa, P.V.: Expert Analysis of Traffic Accidents. Expert-service, Kiev (1995) (in Ukrainian)

    Google Scholar 

  31. Litvinov, A.S., Farobin, A.E.: Automobile. Theory of Operation Properties. Machine building, Moscow (1989) (in Russian)

    Google Scholar 

  32. Rotshtein, A., Rebedailo, V., Kashkanov, A.: Fuzzy Logic-based Identification of Car Wheels Adhesion Factor with a Road Surface. Fuzzy Systems & A.I. Reports and Letters 6(1-3), 53–64 (1997)

    Google Scholar 

  33. Rotshtein, A., Shtovba, S., Mostav, I.: Fuzzy Rule Based Innovation Projects Estimation. In: Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS -, vol. 2, pp. 122–126 (2001)

    Google Scholar 

  34. Barlow, R.E., Proshan, F.: Statistical Theory of Reliability and Life Testing. Holt, Rinehart and Winston, New York (1975)

    MATH  Google Scholar 

  35. Gubinsky, A.I.: Reliability and Quality of Ergonomic Systems Functioning. Nauka, Leningrad (1982) (in Russian)

    Google Scholar 

  36. Druzginin, G.V.: Analysis of Ergonomic Systems. Energoatomizdat, Moscow (1984) (in Russian)

    Google Scholar 

  37. Rotshtein, A.P.: Probabilistic-Algorithmic Models of Man-Machine Systems. Automation (5), 81–87 (1987)

    MathSciNet  Google Scholar 

  38. Rotshtein, A.P., Kuznetcov, P.D.: Design of Faultless Man-Machine Technologies. Technika, Kiev (1992) (in Russian)

    Google Scholar 

  39. Ryabinin, I.A.: Reliability and Safety of Structural-Complex Systems. Polytechnika, Saint Petersburg (2000) (in Russian)

    Google Scholar 

  40. Onisawa, T., Kacprzyk, J. (eds.): Reliability and Safety under Fuzziness, p. 390. Physica-Verlag, Berlin (1995)

    MATH  Google Scholar 

  41. Cai, K.-Y.: Introduction to Fuzzy Reliability, p. 290. Kluwer Academic Publishers, New York (1996)

    Book  MATH  Google Scholar 

  42. Rotshtein, A.: Fuzzy Reliability Analysis of Man-Machine Systems. In: Onisawa, T., Kasprzyk, J. (eds.) Reliability and Safety Analysis under Fuzziness. Studies in Fuzzyness, vol. 4, pp. 245–270. Phisika-Verlag, Springer (1995)

    Google Scholar 

  43. Rotshtein, A.P., Shtovba, S.D.: Fuzzy Reliability of Algorithmic Processes, p. 142. Kontinent – PRIM, Vinnitsa (1997) (in Russian), www.vinnitsa.com/shtovba/doc/fuzzy_reliability.djvu

    Google Scholar 

  44. Rotshtein, A.P., Shtovba, S.D.: Predicting the Reliability of Algorithmic Processes with Fuzzy Input Data. Cybernetics and System Analysis 34(4), 545–552 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Utkin, L.V., Shubinsky, I.B.: Unconventional Methods of Information Systems Reliability Analysis. Lubavich, Saint Petersburg (1998) (in Russian)

    Google Scholar 

  46. Glushkov, V.M.: Automatic Control Theory and Formal Transformations of Micro Programs. Cybernetics (5), 1–10 (1965) (in Russian)

    MathSciNet  Google Scholar 

  47. Glushkov, V.M., Tceitlin, G.E., Ucshenko, E.L.: Algebra. Languages. Programming. Naukova Dumka, Kiev (1989) (in Russian)

    Google Scholar 

  48. Zadeh, L.A.: Fuzzy Sets as a Basic for a Theory of Possibility. Fuzzy Sets and Systems 1, 3–28 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rotshtein, A.P.: Fuzzy Analysis of Activity Algorithms Reliability. Reliability 3(22), 3–16 (2007)

    Google Scholar 

  50. Rotshtein, A.P.: Algebra of Algorithms and Fuzzy Logic in System Reliability Analysis. Journal of Computer and Systems Sciences International 49(2), 253–264 (2010)

    Article  MathSciNet  Google Scholar 

  51. Rotshtein, A.P., Katelnikov, D.I.: Fuzzy Algorithmic Simulation of Reliability: Control and Correction Resource Optimization. Journal of Computer and Systems Sciences International 49(6), 967–971 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander P. Rotshtein .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Rotshtein, A.P., Rakytyanska, H.B. (2012). Applied Fuzzy Systems. In: Fuzzy Evidence in Identification, Forecasting and Diagnosis. Studies in Fuzziness and Soft Computing, vol 275. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25786-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25786-5_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25785-8

  • Online ISBN: 978-3-642-25786-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics