Self-tuning Information Fusion Kalman Filter with Input Estimation

  • Xiaojun SunEmail author
  • Guangming Yan
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 129)


For the multisensor linear discrete time-invariant systems with unknown constant input and unknown noise statistics, the on-line estimators of unknown input and filtering gain are obtained based on CARMA innovation model. For the multisensor stochastic control systems with known input and noise statistics, the optimal information fusion steady-state Kalman filter are presented based on Fadeeva formula. Furthermore, a self-tuning information fusion Kalman filter with input estimation is presented. Based on the dynamic error system analysis method, its asymptotic optimality is proved, i.e. it converges to the optimal fusion steady-state Kalman filter in a realization. A simulation example for a target tracking system with three sensors shows its effectiveness.


Multisensor information fusion input estimation self-tuning Kalman filter convergence asymptotic optimality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shalon, Y.B., Li, X.R.: Multisensor tracking: principles and techniques. YBS Publishing, Strorrs (1995)Google Scholar
  2. 2.
    Li, X.R., Zhu, Y.M., Wang, J., Han, C.Z.: Optimal linear estimation fusion-part 1: Unified fusion rules. IEEE Transactions on Information Theory 49, 2192–2208 (2003)CrossRefGoogle Scholar
  3. 3.
    Carlson, N.A.: Federated square root filter for decentralized parallel process. IEEE Transactions on Aerospace Electronic Systems 34, 200–210 (1998)CrossRefGoogle Scholar
  4. 4.
    Saha, R.X., Chang, K.C.: Efficient algorithm for multisensor track fusion. IEEE Transactions on Aerospace and Electronic Systems 34, 200–210 (1998)CrossRefGoogle Scholar
  5. 5.
    Deng, Z.L., Gao, Y., Mao, L., Li, Y., Hao, G.: New approach to information fusion steady-state Kalman filtering. Automatica 41, 1695–1707 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Gao, Y., Jia, W.J., Sun, X.J., Deng, Z.L.: Self-tuning multisensor weighted measurement fusion Kalman filter. IEEE Transactions on Aerospace and Electronic Systems 45, 179–191 (2009)CrossRefGoogle Scholar
  7. 7.
    Friedland, B.: Treatment of bias in recursive filtering. IEEE Trans. Autcmat. Contr. AC-14, 359–367 (1969)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chan, Y.T., Hu, A.G.C., Plant, J.B.: A Kalman filter based tracking setence with input estimation. IEEE Trans. Aerospace and Electronic Systems AES-15, 237–244 (1979)CrossRefGoogle Scholar
  9. 9.
    Bogler, P.L.: Tracking a maneuvering target using input estimation. IEEE Trans. Aerospace and Electronic Systems AES-23, 298–310 (1987)CrossRefGoogle Scholar
  10. 10.
    Deng, Z.L.: Information fusion filtering theory with applications. Harbin Industrial University Press, Harbin (2007)Google Scholar
  11. 11.
    Deng, Z.L., Li, C.B.: Self-tuning information fusion Kalman predictor weighted by scalars. In: Proc. of the 6th Congress on Intelligent Control and Automation, Dalian, pp. 1487–1491 (2006)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.The Electrical Engineering Institute, Department of AutomationHeilongjiang UniversityHarbinChina
  2. 2.The College of Mechanical and Electrical Engineering, Department of AutomationHeilongjiang UniversityHarbinChina

Personalised recommendations