Skip to main content

High-Order Observability Conditions for Control Systems

  • Chapter
  • First Online:
Recent Advances in Computer Science and Information Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 129))

  • 134 Accesses

Abstract

Observability problem for non-autonomous systems is considered. We deduce high-order observability conditions using the techniques developed in [8] and [9] for stabilization problem, and show that the stabilizer constructed there also works if the observer position is used instead of the actual position of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bushenkov, V., Smirnov, G.: Stabilization Problems with Constraints: Analysis and Computational Aspects. Gordon and Breach, Amsterdam (1997)

    Google Scholar 

  2. Clarke, F., Ledyaev, Y., Sontag, E., Subbotin, A.: Asymptotic controllability implies feedback stabilization. IEEE T. Autom. Contr. 42(10), 1394–1407 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Golubev, A., Krishchenko, A., Tkachev, S.: Stabilization of nonlinear dynamic systems using the system state estimates made by the asymptotic observer. Automat. Rem. Contr. 66(7), 1021–1058 (2005); Translated from Automat. i Telemekh. 7, 3–42 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Izmailov, R.: The peak effect in stationary linear systems with scalar inputs and outputs. Automat. Rem. Contr. 48(8), 1018–1024 (1987)

    MathSciNet  Google Scholar 

  5. Miranda, F.: Numerical methods of stabilizer construction via guidance control. In: AIP Conf. Proc. - ICNAAM 2010, vol. 1281, pp. 473–476 (2010)

    Google Scholar 

  6. Miranda, F.: Magnetic attitude stabilization of satellites using guidance control. In: AIP Conf. Proc. - ICNAAM 2010, vol. 1281, pp. 477–480 (2010)

    Google Scholar 

  7. Pontryagin, L.: Linear differential games. I. Sov. Math. – Dokl. 8, 769–771 (1967)

    MATH  Google Scholar 

  8. Smirnov, G., Miranda, F.: High-order stabilizability conditions for control systems. In: Sivasundaram, S. (ed.) Adv. Math. Probl. Eng., Aerosp. and Sci., pp. 127–133. Cambridge Sci. Publ. Ltd. (2008)

    Google Scholar 

  9. Smirnov, G., Ovchinnikov, M., Miranda, F.: On the magnetic attitude control for spacecraft via the ε-strategies method. Acta Astronaut. 63(5-6), 690–694 (2008)

    Article  Google Scholar 

  10. Smirnov, G., Bushenkov, V., Miranda, F.: Advances on the transient growth quantification in linear control systems. Int. J. Appl. Math. Stat. 14(J09), 82–92 (2009)

    MathSciNet  Google Scholar 

  11. Tsinias, J.: Optimal controllers and output feedback stabilization. Syst. Control Lett. 15(4), 277–284 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Tsinias, J.: A generalization of Vidyasagar’s theorem on stabilizability using state detection. Syst. Control Lett. 17(1), 37–42 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Tsinias, J.: A theorem on global stabilization of nonlinear systems by linear feedback. Syst. Control Lett. 17(5), 357–362 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Tsinias, J., Kalouptsidis, N.: Output feedback stabilization. IEEE T. Automat. Contr. 35(8), 951–954 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tsinias, J., Kalouptsidis, N.: A correction note on “Output feedback stabilization”. IEEE T. Automat. Contr. 39(4), 806 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wisniewski, R.: Satellite Attitude Control Using Only Electromagnetic Actuation. PhD Thesis, Aalborg University, Denmark (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Miranda, F., Smirnov, G. (2012). High-Order Observability Conditions for Control Systems. In: Qian, Z., Cao, L., Su, W., Wang, T., Yang, H. (eds) Recent Advances in Computer Science and Information Engineering. Lecture Notes in Electrical Engineering, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25778-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25778-0_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25777-3

  • Online ISBN: 978-3-642-25778-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics