High-Order Observability Conditions for Control Systems

  • Francisco MirandaEmail author
  • Georgi Smirnov
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 129)


Observability problem for non-autonomous systems is considered. We deduce high-order observability conditions using the techniques developed in [8] and [9] for stabilization problem, and show that the stabilizer constructed there also works if the observer position is used instead of the actual position of the system.


Orbital Plane Magnetic Dipole Moment Lyapunov Function Versus Observer Position Observability Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bushenkov, V., Smirnov, G.: Stabilization Problems with Constraints: Analysis and Computational Aspects. Gordon and Breach, Amsterdam (1997)Google Scholar
  2. 2.
    Clarke, F., Ledyaev, Y., Sontag, E., Subbotin, A.: Asymptotic controllability implies feedback stabilization. IEEE T. Autom. Contr. 42(10), 1394–1407 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Golubev, A., Krishchenko, A., Tkachev, S.: Stabilization of nonlinear dynamic systems using the system state estimates made by the asymptotic observer. Automat. Rem. Contr. 66(7), 1021–1058 (2005); Translated from Automat. i Telemekh. 7, 3–42 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Izmailov, R.: The peak effect in stationary linear systems with scalar inputs and outputs. Automat. Rem. Contr. 48(8), 1018–1024 (1987)MathSciNetGoogle Scholar
  5. 5.
    Miranda, F.: Numerical methods of stabilizer construction via guidance control. In: AIP Conf. Proc. - ICNAAM 2010, vol. 1281, pp. 473–476 (2010)Google Scholar
  6. 6.
    Miranda, F.: Magnetic attitude stabilization of satellites using guidance control. In: AIP Conf. Proc. - ICNAAM 2010, vol. 1281, pp. 477–480 (2010)Google Scholar
  7. 7.
    Pontryagin, L.: Linear differential games. I. Sov. Math. – Dokl. 8, 769–771 (1967)zbMATHGoogle Scholar
  8. 8.
    Smirnov, G., Miranda, F.: High-order stabilizability conditions for control systems. In: Sivasundaram, S. (ed.) Adv. Math. Probl. Eng., Aerosp. and Sci., pp. 127–133. Cambridge Sci. Publ. Ltd. (2008)Google Scholar
  9. 9.
    Smirnov, G., Ovchinnikov, M., Miranda, F.: On the magnetic attitude control for spacecraft via the ε-strategies method. Acta Astronaut. 63(5-6), 690–694 (2008)CrossRefGoogle Scholar
  10. 10.
    Smirnov, G., Bushenkov, V., Miranda, F.: Advances on the transient growth quantification in linear control systems. Int. J. Appl. Math. Stat. 14(J09), 82–92 (2009)MathSciNetGoogle Scholar
  11. 11.
    Tsinias, J.: Optimal controllers and output feedback stabilization. Syst. Control Lett. 15(4), 277–284 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Tsinias, J.: A generalization of Vidyasagar’s theorem on stabilizability using state detection. Syst. Control Lett. 17(1), 37–42 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Tsinias, J.: A theorem on global stabilization of nonlinear systems by linear feedback. Syst. Control Lett. 17(5), 357–362 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Tsinias, J., Kalouptsidis, N.: Output feedback stabilization. IEEE T. Automat. Contr. 35(8), 951–954 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Tsinias, J., Kalouptsidis, N.: A correction note on “Output feedback stabilization”. IEEE T. Automat. Contr. 39(4), 806 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wisniewski, R.: Satellite Attitude Control Using Only Electromagnetic Actuation. PhD Thesis, Aalborg University, Denmark (1996)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Center for Research and Development in Mathematics and Applications of University of Aveiro School of Technology and ManagementPolytechnic Institute of Viana do CasteloViana do CasteloPortugal
  2. 2.Centre of Physics of University of Minho Department of Mathematics and Applications, School of SciencesUniversity of MinhoBragaPortugal

Personalised recommendations