Using Bayesian Networks to Synthesize Human Walking Animation

  • Hu Li’an
  • Xu Haiyin
  • Fang Xiongbing
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 129)


A human walking animation synthesis method is proposed to learn motion discipline from motion capture data and produce new walking animations by using Bayesian Networks. Raw motion capture data is segmented to walking units, and then footprint parameters and keyframes are extracted to train Bayesian Networks. The trained Bayesian Networks can infer appropriate keyframes according to given footprint sequence. The presented method combines the non-deterministic inference ability of Bayesian Networks and control of footprint parameters for end effector. Experiments demonstrate that motions synthesized by our method strictly satisfy space-time constraints and perform naturally.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Towmsend, A.: Biped Gait Stabilization via Foot Placement. Biomechanics 18, 21–38 (1985)CrossRefGoogle Scholar
  2. 2.
    van de Panne, M.: From Footprints to Animation. Computer Graphics Forum 16, 211–223 (1997)CrossRefGoogle Scholar
  3. 3.
    Xu, W., Pan, Z., Ge, Y.: Footprints Sampling Based Motion Editing. Journal of Computer-Aided Design & Computer Graphics 15, 805–811 (2003)Google Scholar
  4. 4.
    Choi, M.G., Lee, L., Shin, S.Y.: Planning biped locomotion using motion capture data and probabilistic roadmaps. ACM Transaction on Graphics 22, 182–203 (2003)CrossRefGoogle Scholar
  5. 5.
    Liu, G., Pan, Z., Cheng, X., Li, L., Zhang, M.: A Survey on Machine Learning in the Synthesis of Human Motions. Journal of Computer-Aided Design & Computer Graphics 22, 1619–1627 (2010)Google Scholar
  6. 6.
    Li, C., Xia, S., Wang, Z.: Pose Synthesis Using the Inverse of Jacobian Matrix Learned from Examples. In: Virtual Reality Conference, pp. 99–106. IEEE (2007)Google Scholar
  7. 7.
    Liu, Y., Liu, J.: Keyframe Extraction from Motion Capture Data by Optimal Reconstruction Error. Journal of Computer-Aided Design & Computer Graphics 22, 670–675 (2010)CrossRefGoogle Scholar
  8. 8.
    Lau, M., Bar-Joseph, Z., Kuffner, J.: Modeling Spatial and Temporal Variation in Motion Data. ACM Transactions on Graphics 28, 1–10 (2009)CrossRefGoogle Scholar
  9. 9.
    Wang, S.: Bayesian Networks Learning, Inference and Application, pp. 117–135. LiXin Accounting Publishing House (2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Hu Li’an
    • 1
  • Xu Haiyin
    • 1
  • Fang Xiongbing
    • 1
  1. 1.Huazhong University of Science & TechnologyWuhanChina

Personalised recommendations